Skip to content

Research at St Andrews

Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Donald Slater, Peter Nienow, Andrew Sole, Tom Cowton, Ruth Mottram, Peter Langen, Douglas Mair

School/Research organisations

Abstract

Understanding the drivers of recent change at Greenlandic tidewater glaciers is of great importance if we are to predict how these glaciers will respond to climatic warming. A poorly constrained component of tidewater glacier processes is the near-terminus subglacial hydrology. Here we present a novel method for constraining near-terminus subglacial hydrology with application to marine-terminating Kangiata Nunata Sermia in south- west Greenland. By simulating proglacial plume dynamics using buoyant plume theory and a general circulation model, we assess the critical subglacial discharge, if delivered through a single compact channel, required to generate a plume which reaches the fjord surface. We then compare catchment runoff to a time series of plume visibility acquired from a time-lapse camera. We identify extended periods throughout the 2009 melt season where catchment runoff significantly exceeds the discharge required for a plume to reach the fjord surface, yet we observe no plume. We attribute these observations to spatial spreading of runoff across the grounding line. Persistent distributed drainage near the terminus would lead to more spatially homogeneous submarine melting and may promote more rapid basal sliding during warmer summers, potentially providing a mechanism independent of ocean forcing for increases in atmospheric temperature to drive tidewater glacier acceleration.
Close

Details

Original languageEnglish
Pages (from-to)309-323
Number of pages15
JournalJournal of Glaciology
Volume63
Issue number238
Early online date19 Jan 2017
DOIs
Publication statusPublished - Apr 2017

    Research areas

  • Glacier hydrology, Ice/ocean interactions, Subglacial processes

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Sensitivity of tidewater glaciers to submarine melting governed by plume locations

    Cowton, T., Todd, J. A. & Benn, D. I., 9 Sep 2019, (Accepted/In press) In : Geophysical Research Letters. In press

    Research output: Contribution to journalArticle

  2. Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier

    Bevan, S., Luckman, A., Benn, D. I., Cowton, T. & Todd, J., 5 Sep 2019, In : The Cryosphere. 13, p. 2303-2315 13 p.

    Research output: Contribution to journalArticle

  3. The influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet

    Davison, B., Sole, A., Livingstone, S., Cowton, T. & Nienow, P., 21 Feb 2019, In : Frontiers in Earth Sciences. 7, 24 p., 10.

    Research output: Contribution to journalReview article

  4. Linear response of east Greenland’s tidewater glaciers to ocean/atmosphere warming

    Cowton, T., Sole, A., Nienow, P., Slater, D. & Christoffersen, P., 31 Jul 2018, In : Proceedings of the National Academy of Sciences of the United States of America. 115, 31, p. 7907-7912

    Research output: Contribution to journalArticle

  5. Glacier calving in Greenland

    Benn, D. I., Cowton, T., Todd, J. & Luckman, A., Dec 2017, In : Current Climate Change Reports. 3, 4, p. 282-290

    Research output: Contribution to journalReview article

Related by journal

  1. A general theory of glacier surges

    Benn, D. I., Fowler, A., Hewitt, I. & Sevestre, H., Oct 2019, In : Journal of Glaciology. 65, 253, p. 701-716 16 p.

    Research output: Contribution to journalArticle

  2. Glacial lake evolution and glacier–lake interactions in the Poiqu River basin, central Himalaya, 1964–2017

    Zhang, G., Bolch, T., Allen, S., Linsbauer, A., Chen, W. & Wang, W., 1 Apr 2019, In : Journal of Glaciology. First View, 19 p.

    Research output: Contribution to journalArticle

  3. Mass and enthalpy budget evolution during the surge of a polythermal glacier: a test of theory

    Benn, D. I., Jones, R. L., Luckman, A., Fürst, J. J., Hewitt, I. & Sommer, C., Oct 2019, In : Journal of Glaciology. 65, 253, p. 717-731 15 p.

    Research output: Contribution to journalArticle

  4. Glacier branch lines and glacier ice thickness estimation for debris-covered glaciers in the Central Tien Shan

    Pieczonka, T., Bolch, T., Kröhnert, M., Peters, J. & Liu, S., Oct 2018, In : Journal of Glaciology. 64, 247, p. 835-849 15 p.

    Research output: Contribution to journalArticle

  5. The Canadian Ice Island Drift, Deterioration and Detection (CI2D3) Database

    Crawford, A. J., Crocker, G., Mueller, D., Desjardins, L., Saper, R. & Carrieres, T., Jun 2018, In : Journal of Glaciology. 64, 245, p. 517-521

    Research output: Contribution to journalArticle

ID: 248138426

Top