Skip to content

Research at St Andrews

Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways

Research output: Contribution to journalArticle


Marc Sturrock, Alan J. Terry, Dimitris P. Xirodimas, Alastair M. Thompson, Mark A. J. Chaplain

School/Research organisations


The correct localisation of transcription factors is vitally important for the proper functioning of many intracellular signalling pathways. Experimental data has shown that many pathways exhibit oscillations in concentrations of the substances involved, both temporally and spatially. Negative feedback loops are important components of these oscillations, providing fine regulation for the factors involved. In this paper we consider mathematical models of two such pathways-Hes1 and p53-Mdm2.

Building on previous mathematical modelling approaches, we derive systems of partial differential equations to capture the evolution in space and time of the variables in the Hes1 and p53-Mdm2 systems. Through computational simulations we show that our reaction-diffusion models are able to produce sustained oscillations both spatially and temporally, accurately reflecting experimental evidence and advancing previous models. The simulations of our models also allow us to calculate a diffusion coefficient range for the variables in each mRNA and protein system, as well as ranges for other key parameters of the models, where sustained oscillations are observed. Finally, by exploiting the explicitly spatial nature of the partial differential equations, we are also able to manipulate mathematically the spatial location of the ribosomes, thus controlling where the proteins are synthesized within the cytoplasm. The results of these simulations predict an optimal distance outside the nucleus where protein synthesis should take place in order to generate sustained oscillations.

Using partial differential equation models, new information can be gained about the precise spatio-temporal dynamics of mRNA and proteins. The ability to determine spatial localisation of proteins within the cell is likely to yield fresh insight into a range of cellular diseases such as diabetes and cancer. (C) 2010 Elsevier Ltd. All rights reserved.



Original languageEnglish
Pages (from-to)15-31
Number of pages17
JournalJournal of Theoretical Biology
Issue number1
Publication statusPublished - 21 Mar 2011

    Research areas


Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Learning-induced switching costs in a parasitoid can maintain diversity of host aphid phenotypes although biocontrol is destabilized under abiotic stress

    Preedy, K., Chaplain, M. A. J., Leybourne, D., Marion, G. & Karley, A., 30 Mar 2020, In : Journal of Animal Ecology. Early View

    Research output: Contribution to journalArticle

  2. Bridging the gap between individual-based and continuum models of growing cell populations

    Chaplain, M. A. J., Lorenzi, T. & Macfarlane, F. R., Jan 2020, In : Journal of Mathematical Biology. 80, 1-2, p. 343-371

    Research output: Contribution to journalArticle

  3. Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy

    Stace, R. E. A., Stiehl, T., Chaplain, M. A. J., Marciniak-Czochra, A. & Lorenzi, T., 2020, In : Mathematical Modelling of Natural Phenomena. 15, 22 p., 14.

    Research output: Contribution to journalArticle

  4. Quantitative predictive modelling approaches to understanding rheumatoid arthritis: a brief review

    Macfarlane, F. R., Chaplain, M. A. J. & Eftimie, R., 27 Dec 2019, In : Cells. 9, 1, 26 p., 74.

    Research output: Contribution to journalReview article

Related by journal

  1. Journal of Theoretical Biology (Journal)

    Mark Andrew Joseph Chaplain (Editor)
    10 Apr 2017 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Consistency and identifiability of the polymorphism-aware phylogenetic models

    Borges, R. & Kosiol, C., 7 Feb 2020, In : Journal of Theoretical Biology. 486, p. 1-6 6 p., 110074.

    Research output: Contribution to journalArticle

  2. A theory for investment across defences triggered at different stages of a predator-prey encounter

    Wang, L., Ruxton, G. D., Cornell, S. J., Speed, M. P. & Broom, M., 21 Jul 2019, In : Journal of Theoretical Biology. 473, p. 9-19 11 p.

    Research output: Contribution to journalArticle

  3. Spatial-stochastic modelling of synthetic gene regulatory networks

    Macnamara, C. K., Mitchell, E. & Chaplain, M. A. J., 10 Feb 2019, In : Journal of Theoretical Biology. In press

    Research output: Contribution to journalArticle

  4. Approximate Bayesian computation reveals the importance of repeated measurements for parameterising cell-based models of growing tissues

    Kursawe, J., Baker, R. E. & Fletcher, A. G., 14 Apr 2018, In : Journal of Theoretical Biology. 443, p. 66-81 16 p.

    Research output: Contribution to journalArticle

ID: 206439499