Skip to content

Research at St Andrews

Spectral analyses reveal the presence of adult-like activity in the embryonic stomatogastric motor patterns of the lobster, Homarus americanus

Research output: Contribution to journalArticlepeer-review

DOI

Author(s)

Kristina J Rehm, Adam L Taylor, Stefan R Pulver, Eve Marder

School/Research organisations

Abstract

The stomatogastric nervous system (STNS) of the embryonic lobster is rhythmically active prior to hatching, before the network is needed for feeding. In the adult lobster, two rhythms are typically observed: the slow gastric mill rhythm and the more rapid pyloric rhythm. In the embryo, rhythmic activity in both embryonic gastric mill and pyloric neurons occurs at a similar frequency, which is slightly slower than the adult pyloric frequency. However, embryonic motor patterns are highly irregular, making traditional burst quantification difficult. Consequently, we used spectral analysis to analyze long stretches of simultaneous recordings from muscles innervated by gastric and pyloric neurons in the embryo. This analysis revealed that embryonic gastric mill neurons intermittently produced pauses and periods of slower activity not seen in the recordings of the output from embryonic pyloric neurons. The slow activity in the embryonic gastric mill neurons increased in response to the exogenous application of Cancer borealis tachykinin-related peptide 1a (CabTRP), a modulatory peptide that appears in the inputs to the stomatogastric ganglion (STG) late in larval development. These results suggest that the STG network can express adult-like rhythmic behavior before fully differentiated adult motor patterns are observed, and that the maturation of the neuromodulatory inputs is likely to play a role in the eventual establishment of the adult motor patterns.
Close

Details

Original languageEnglish
Pages (from-to)3104-22
Number of pages19
JournalJournal of Neurophysiology
Volume99
Issue number6
DOIs
Publication statusPublished - Jun 2008

    Research areas

  • Action Potentials, Age Factors, Animals, Behavior, Animal, Embryo, Nonmammalian, Ganglia, Invertebrate, In Vitro Techniques, Motor Neurons, Nephropidae, Nerve Net, Periodicity, Pylorus, Spectrum Analysis, Stomach, Tachykinins

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Inexpensive methods for live imaging of central pattern generator activity inthe Drosophila larval locomotor system

    Booth, J., Sane, V., Gather, M. C. & Pulver, S. R., 31 Dec 2020, In: Journal of Undergraduate Neuroscience Education. 19, 1, p. A124-A133

    Research output: Contribution to journalArticlepeer-review

  2. Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes

    Murawski, C., Pulver, S. R. & Gather, M. C., 7 Dec 2020, In: Nature Communications. 11, 11 p., 6248.

    Research output: Contribution to journalArticlepeer-review

  3. Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging

    Murawski, C., Mischok, A., Booth, J. H., Kumar, J. D., Archer, E., Tropf, L. C., Keum, C., Deng, Y., Yoshida, K., Samuel, I. D. W., Schubert, M., Pulver, S. & Gather, M. C., 5 Sep 2019, In: Advanced Materials. Early View, 8 p.

    Research output: Contribution to journalArticlepeer-review

  4. New applications of organic LEDs in biophotonics

    Murawski, C., Mischok, A., Keum, C., Kumar, J. D., Pulver, S. R. & Gather, M. C., 2018, Solid-State Lighting, SSL 2018. Optical Society of American (OSA), (Optics InfoBase Conference Papers; vol. Part F117-SSL 2018).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  5. Organic light-emitting diodes for optogenetic stimulation of Drosophila larvae

    Murawski, C., Morton, A., Samuel, I. D. W., Pulver, S. & Gather, M. C., 14 Nov 2016, Proceedings, Light, Energy and the Environment. Optical Society of American (OSA), 3 p. JW4A.9. (Fourier Transform Spectroscopy).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

Related by journal

  1. Modulation of spinal motor networks by astrocyte-derived adenosine is dependent on D1-like dopamine receptor signalling

    Acton, D., Broadhead, M. J. & Miles, G. B., 1 Sep 2018, In: Journal of Neurophysiology. 120, 3, p. 998-1009

    Research output: Contribution to journalArticlepeer-review

  2. Differential regulation of NMDA receptors by D-serine and glycine in mammalian spinal locomotor networks

    Acton, D. & Miles, G. B., 1 May 2017, In: Journal of Neurophysiology. 117, 5, p. 1877-1893

    Research output: Contribution to journalArticlepeer-review

  3. Gliotransmission and adenosinergic modulation: insights from mammalian spinal motor networks

    Acton, D. & Miles, G. B., Dec 2017, In: Journal of Neurophysiology. 118, 6, p. 3311-3327

    Research output: Contribution to journalReview articlepeer-review

  4. Sodium pump regulation of locomotor control circuits

    Picton, L. D., Zhang, H. & Sillar, K. T., 4 Aug 2017, In: Journal of Neurophysiology. 118, 2, p. 1070-1081

    Research output: Contribution to journalArticlepeer-review

ID: 167961054

Top