Skip to content

Research at St Andrews

Spinel-based coatings for metal supported solid oxide fuel cells

Research output: Contribution to journalArticle

Author(s)

Elena Stefan, Dragos Neagu, Peter Blennow Tullmar, Åsa Helen Persson, Bhaskar R. Sudireddy, David Miller, Ming Chen, John Irvine

School/Research organisations

Abstract

Metal supports and metal supported half cells developed at DTU are used for the study of a solution infiltration approach to form protective coatings on porous metal scaffolds. The metal particles in the anode layer, and sometimes even in the support may undergo oxidation in realistic operating conditions leading to severe cell degradation. Here, a controlled oxidation of the porous metal substrate and infiltration of Mn and/or Ce nitrate solutions are applied for in situ formation of protective coatings. Our approach consists of scavenging the FeCr oxides formed during the controlled oxidation into a continuous and well adhered coating. The effectiveness of coatings is the result of composition and structure, but also of the microstructure and surface characteristics of the metal scaffolds.
Close

Details

Original languageEnglish
Pages (from-to)232-244
Number of pages13
JournalMaterials Research Bulletin
Volume89
Early online date4 Feb 2017
DOIs
Publication statusPublished - May 2017

    Research areas

  • Coatings, Porous metal supports, Solution infiltration, Spinels

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide

    Kim, E. J., Ma, L. A., Duda, L. C., Pickup, D. M., Chadwick, A. V., Younesi, R., Irvine, J. T. S. & Armstrong, R., 6 Jan 2020, In : ACS Applied Energy Materials. Early View

    Research output: Contribution to journalArticle

  3. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  4. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  5. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Hierarchical structured graphene/metal oxide/porous carbon composites as anode materials for lithium-ion batteries

    Guo, R., Yue, W., Ren, Y. & Zhou, W., Jan 2016, In : Materials Research Bulletin. 73, p. 102-110

    Research output: Contribution to journalArticle

  2. Spin–glass transition in La0.75Sr0.25Mn0.5Cr0.5−xAlxO3−δ perovskites

    Azad, A. K., Sanchez-Benitez, J. & Irvine, J. T. S., 7 Jul 2013, In : Materials Research Bulletin. 48, 7, p. 2482-2490 9 p.

    Research output: Contribution to journalArticle

  3. Structural, magnetic and electrochemical characterization of La0.83A0.17Fe0.5Cr0.5O3_δ (A = Ba, Ca) perovskites

    Azad, AK., Eriksson, CG. & Irvine, J. T. S., 1 Jul 2009, In : Materials Research Bulletin. 44, 7, p. 1451–1457 7 p.

    Research output: Contribution to journalArticle

  4. Synthesis, structure and magnetic properties of Sr2Fe1-xGaxMoO6 (0 ≤ x ≤ 0.6) double perovskites

    Azad, A. K., Khan, A., Eriksson, S-G. & Irvine, J. T. S., Dec 2009, In : Materials Research Bulletin. 44, 12, p. 2181-2185 5 p.

    Research output: Contribution to journalArticle

ID: 249090883

Top