Skip to content

Research at St Andrews

Split superconducting and time-reversal symmetry-breaking transitions in Sr2RuO4 under stress

Research output: Contribution to journalArticlepeer-review

Author(s)

Vadim Grinenko, Shreenanda Ghosh, Rajib Sarkar, Jean-Christophe Orain, Artem Nikitin, Matthias Elender, Debarchan Das, Zurab Guguchia, Felix Brückner, Mark E. Barber, Joonbum Park, Naoki Kikugawa, Dmitry A. Sokolov, Jake S. Bobowski, Takuto Miyoshi, Yoshiteru Maeno, Andrew P. Mackenzie, Hubertus Luetkens, Clifford W. Hicks, Hans-Henning Klauss

School/Research organisations

Abstract

Strontium ruthenate (Sr2RuO4) continues to present an important test of our understanding of unconventional superconductivity, because while its normal-state electronic structure is known with precision, its superconductivity remains unexplained. There is evidence that its order parameter is chiral, but reconciling this with recent observations of the spin part of the pairing requires an order parameter that is either finely tuned or implies a new form of pairing. Therefore, a definitive resolution of whether the superconductivity of Sr2RuO4 is chiral is important for the study of superconductivity. Here we report the measurement of zero-field muon spin relaxation—a probe sensitive to weak magnetism—on samples under uniaxial stresses. We observe stress-induced splitting between the onset temperatures of superconductivity and time-reversal symmetry breaking—consistent with the qualitative expectations for a chiral order parameter—and argue that this observation cannot be explained by conventional magnetism. In addition, we report the appearance of bulk magnetic order under higher uniaxial stress, above the critical pressure at which a Lifshitz transition occurs in Sr2RuO4.
Close

Details

Original languageEnglish
Number of pages16
JournalNature Physics
Early online date4 Mar 2021
DOIs
Publication statusE-pub ahead of print - 4 Mar 2021

    Research areas

  • Materials science, Physics

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Quasi-particle interference and quantum confinement in a correlated Rashba spin-split 2D electron liquid

    Yim, C. M., Chakraborti, D., Rhodes, L. C., Khim, S., Mackenzie, A. & Wahl, P., 9 Apr 2021, In: Science Advances. 7, 15, 8 p., eabd7361.

    Research output: Contribution to journalArticlepeer-review

  2. Single-crystal growth of Sr2RuO4 by the floating-zone method using an infrared image furnace with improved halogen lamps

    Kikugawa, N., Sokolov, D. A., Nagasawa, T. & Mackenzie, A. P., 8 Apr 2021, In: Crystals. 11, 4, 10 p., e392.

    Research output: Contribution to journalArticlepeer-review

  3. High sensitivity heat capacity measurements on Sr2RuO4 under uniaxial pressure

    Li, Y. -S., Kikugawa, N., Sokolov, D. A., Jerzembeck, F., Gibbs, A. S., Maeno, Y., Hicks, C. W., Schmalian, J., Nicklas, M. & Mackenzie, A. P., 9 Mar 2021, In: Proceedings of the National Academy of Sciences of the United States of America. 118, 10, e2020492118.

    Research output: Contribution to journalArticlepeer-review

  4. Charge density waves in YBa2Cu3O6.67 probed by resonant x-ray scattering under uniaxial compression

    Kim, H-H., Lefrançois, E., Kummer, K., Fumagalli, R., Brookes, N. B., Betto, D., Nakata, S., Tortora, M., Porras, J., Loew, T., Barber, M. E., Braicovich, L., Mackenzie, A. P., Hicks, C. W., Keimer, B., Minola, M. & Le Tacon, M., 22 Jan 2021, In: Physical Review Letters. 126, 3, 7 p., 037002 .

    Research output: Contribution to journalArticlepeer-review

  5. Direct comparison of ARPES, STM, and quantum oscillation data for band structure determination in Sr2RhO4

    Battisti, I., Tromp, W. O., Riccò, S., Perry, R. S., Mackenzie, A. P., Tamai, A., Baumberger, F. & Allan, M. P., 8 Dec 2020, In: npj Quantum Materials. 5, 8 p., 91.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Coherently driving a single quantum two-level system with dichromatic laser pulses

    He, Y-M., Wang, H., Wang, C., Chen, M-C., Ding, X., Qin, J., Duan, Z-C., Chen, S., Li, J-P., Liu, R-Z., Schneider, C., Atatüre, M., Hoefling, S., Lu, C-Y. & Pan, J-W., 15 Jul 2019, In: Nature Physics. 6 p.

    Research output: Contribution to journalArticlepeer-review

  2. Metamagnetic texture in a polar antiferromagnet

    Sokolov, D. A., Kikugawa, N., Helm, T., Borrmann, H., Burkhardt, U., Cubitt, R., White, J. S., Ressouche, E., Bleuel, M., Kummer, K., Mackenzie, A. P. & Rößler, U. K., 29 Apr 2019, In: Nature Physics.

    Research output: Contribution to journalArticlepeer-review

  3. Signatures of a dissipative phase transition in photon correlation measurements

    Fink, T., Schade, A., Höfling, S., Schneider, C. & Imamoglu, A., Apr 2018, In: Nature Physics. 14, 4, p. 365-369 5 p.

    Research output: Contribution to journalArticlepeer-review

  4. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state

    Hamidian, M. H., Edkins, S. D., Kim, C. K., Davis, J. C., Mackenzie, A., Eisaki, H., Uchida, S., Lawler, M. J., Kim, E-A., Sachdev, S. & Fujita, K., Feb 2016, In: Nature Physics. 12, 2, p. 150-156

    Research output: Contribution to journalArticlepeer-review

ID: 273874207

Top