Skip to content

Research at St Andrews

Structural and electrical properties of the perovskite oxide Sr2FeNbO6

Research output: Contribution to journalArticle

DOI

Author(s)

Shanwen Tao, J Canales-Vázquez, John Thomas Sirr Irvine

School/Research organisations

Abstract

The mixed perovskite Sr2FeNbO6. has been shown to have a tetragonal structure with space group I4/m (87), a = 5.6078(1) Angstrom, c = 7.9658(1) Angstrom, V = 250.51(1) Angstrom(3) according to electron and X-ray diffraction. The material is redox stable and maintains its structure in a reducing atmosphere. After reducing in 5% H-2 at 900 degreesC for 6 h, Sr2FeNbO6 still exhibits a tetragonal structure with space group I4/m (87), a = 5.6051(1) Angstrom, c = 7.9644(1) Angstrom, V = 250.22(1) Angstrom(3), i.e., with a slightly higher degree of tetragonality. A lattice volume contraction of 0.12% was observed during the reduction, which may be attributed to the loss of lattice oxygen. TGA analysis indicates that Sr2FeNbO6 starts to lose oxygen at 300 degreesC and the total weight loss is about 0.2 wt % from room temperature to 950 degreesC in 5% H-2. The morphology of this material does not significantly change on reduction according to SEM observation. The conductivities of this material in air and 5% H-2 were 3.13 x 10(-2) and 2.39 S/cm, respectively at 900 degreesC. The apparent conduction activation energy of Sr2FeNbO6 in air is 0.74 +/- 0.02 eV between 400 and 900 degreesC and in 5% H-2 is 0.28 +/- 0.02 eV between 140 and 560 degreesC and 0.58 +/- 0.02 eV between 560 and 900 degreesC, indicating it is a semiconductor in both atmospheres. The increase of de conductivity of Sr2FeNbO6 at low p(O-2) indicates n-type electronic conduction. The dc conductivity of Sr2FeNbO6 at low p(O-2) exhibits a p(O-2)(-1/6) dependence that is interpreted by a simple defect chemistry model.

Close

Details

Original languageEnglish
Pages (from-to)2309-2316
Number of pages8
JournalChemistry of Materials
Volume16
Issue number11
DOIs
Publication statusPublished - 1 Jun 2004

    Research areas

  • IONIC-ELECTRONIC CONDUCTION, COMPLEX PEROVSKITE, SR2FEMOO6, TRANSPORT, CRYSTAL

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide

    Kim, E. J., Ma, L. A., Duda, L. C., Pickup, D. M., Chadwick, A. V., Younesi, R., Irvine, J. T. S. & Armstrong, R., 6 Jan 2020, In : ACS Applied Energy Materials. Early View

    Research output: Contribution to journalArticle

  3. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  4. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  5. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Large crystalline domains and enhanced exciton diffusion length enable efficient organic solar cells

    Zhang, Y., Sajjad, M. T., Blaszczyk, O., Parnell, A. J., Ruseckas, A., Serrano, L. A., Cooke, G. & Samuel, I. D. W., 10 Sep 2019, In : Chemistry of Materials. 31, 17, p. 6548-6557

    Research output: Contribution to journalArticle

  2. n-type doping of organic semiconductors: immobilization via covalent anchoring

    Reiser, P., Benneckendorf, F. S., Barf, M-M., Müller, L., Bäuerle, R., Hillebrandt, S., Beck, S., Lovrincic, R., Mankel, E., Freudenberg, J., Jänsch, D., Kowalsky, W., Pucci, A., Jaegermann, W., Bunz, U. H. F. & Müllen, K., 11 Jun 2019, In : Chemistry of Materials. 31, 11, p. 4213-4221 9 p.

    Research output: Contribution to journalArticle

  3. A reinvestigation of Na2Fe2(C2O4)2H2O: an iron-based positive electrode for secondary batteries

    Yao, W., Sougrati, M-T., Hoang, K., Hui, J., Lightfoot, P. & Armstrong, A. R., 14 Nov 2017, In : Chemistry of Materials. 29, 21, p. 9095-9101

    Research output: Contribution to journalArticle

  4. Assembly-diassembly-organization-reassembly synthesis of zeolites based on cfi-type layers

    Firth, D. S., Morris, S. A., Wheatley, P. S., Russell, S. E., Slawin, A. M. Z., Dawson, D. M., Mayoral, A., Opanasenko, M., Položij, M., Čejka, J., Nachtigall, P. & Morris, R. E., 11 Jul 2017, In : Chemistry of Materials. 29, 13, p. 5605-5611

    Research output: Contribution to journalArticle

  5. Controlling of structural ordering and rigidity of β-SiAlON:Eu through chemical cosubstitution to approach narrow-band-emission for light-emitting diodes application

    Zhang, X., Fang, M-H., Tsai, Y-T., Lazarowska, A., Mahlik, S., Lesniewski, T., Grinberg, M., Pang, W. K., Pan, F., Liang, C., Zhou, W., Wang, J., Lee, J-F., Cheng, B-M., Hung, T-L., Chen, Y-Y. & Liu, R-S., 22 Aug 2017, In : Chemistry of Materials. 29, 16, p. 6781-6792

    Research output: Contribution to journalArticle

Related by journal

  1. Chemistry of Materials (Journal)

    Finlay Morrison (Reviewer)
    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

ID: 279175

Top