Skip to content

Research at St Andrews

Structural and electrochemical properties of the perovskite oxide Pr0.7Sr0.3Cr0.9Ni0.1O3- δ

Research output: Contribution to journalArticlepeer-review

Author(s)

School/Research organisations

Abstract

The perovskite oxide Pr0.7Sr0.3Cr0.9Ni0.1O3-delta was synthesised by a corribustion method. Pr0.7Sr0.3Cr0.9Ni0.1O3-delta obtained at 1400 degrees C has been shown to have an orthorhombic structure with space group Pnma (62), a=5.4388(1)angstrom, b=7.6969(1)angstrom, c=5.4584(1)angstrom, V=228.50(1)angstrom(3) according to X-ray diffraction. The material is redox stable and maintains its structure in a reducing atmosphere. After reducing in 5% H-2 at 900 degrees C for 190 h, Pr0.7Sr0.3Cr0.9Ni0.1O3-delta Still exhibits an orthorhombic structure. A lattice volume expansion of 0.61% was observed during the reduction, which may be attributed to reduction of Pr, Cr and Ni ions accompanying loss of lattice oxygen. TGA analysis and EDS indicate Pr0.7Sr0.3Cr0.9Ni0.1O3-delta shows enhanced resistance to nickel reduction. The conductivities of this material in air and 5% H-2 were 27.4 and 1.37 S/cm respectively at 900 degrees C. Pr0.7Sr0.3Cr0.9Ni0.1O3-delta exhibits semiconductor behaviour in both air and 5% H-2. The anode polarisation resistance of Pr0.7Sr0.3Cr0.9Ni0.1O3-delta reached 0.98 Omega cm(2) at 900 degrees C in wet H-2 but still not good enough as a good SOFC anode although it could be further improved by optimisation of microstructure. (C) 2008 Elsevier B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)725-731
Number of pages7
JournalSolid State Ionics
Volume179
Issue number19-20
DOIs
Publication statusPublished - Aug 2008

    Research areas

  • electrical conductivity, perovskite, structure, Pr0.7Sr0.3Cr0.9Ni0.1O3-delta, fuel cell, EFFECTIVE IONIC-RADII, FUEL-CELL ANODES, METHANE OXIDATION, SOFC ANODE, TEMPERATURE, LA0.75SR0.25CR0.5MN0.5O3-DELTA, DIFFRACTION, ELECTRODES, GAS

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures

    Price, R., Weissen, U., Grolig, J. G., Cassidy, M., Mai, A. & Irvine, J. T. S., 8 Apr 2021, In: Journal of Materials Chemistry A. 15 p.

    Research output: Contribution to journalArticlepeer-review

  2. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  3. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  4. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  5. Upscaling of co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells: a progress report on a decade of academic-industrial collaboration

    Price, R., Cassidy, M., Grolig, J. G., Longo, G. G., Weissen, U. G., Mai, A. G. & Irvine, J. T. S., 12 Feb 2021, In: Advanced Energy Materials. Early View, 21 p., 2003951.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  2. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In: Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticlepeer-review

  3. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

  4. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In: Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticlepeer-review

  5. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In: Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 412087

Top