Skip to content

Research at St Andrews

Structural, electrochemical and magnetic characterization of the layered-type PrBa0.5Sr0.5Co2O5+δ perovskite

Research output: Contribution to journalArticle


Abul Kalam Azad, John Thomas Sirr Irvine, Jung Kim

School/Research organisations


Structural, electrical and magnetic properties of the layered cobaltite PrBa0.5Sr0.5Co2O5+δ have been investigated by means of neutron diffraction, electron diffraction, thermogravimetric analysis and SQUID magnetometry. Rietveld analysis of neutron diffraction data shows the ordered distribution of oxygen vacancies in [PrOδ] planes which doubles the lattice parameters from the simple perovskite cell parameter as a≈2ap and c≈2ap (ap is the cell parameter of the simple Perovskite) yielding tetragonal symmetry in the P4/mmm space group. On heating, above 573 K in air, structural rearrangement takes place and the structure can be defined as a≈ap and c≈2ap in the same space group. Oxygen occupancies have been determined as a function of temperature from neutron diffraction results. Initially (≥373 K), oxygen occupancy was increased and then decreased with increasing temperature. It was found that at 973 K the total oxygen loss is calculated about 0.265 oxygen/formula unit. Oxygen vacancy ordering was observed below 573 K, and the oxygen occupancy decreases as cell volume increases with increasing temperature. Area specific resistance (ASR) measurements show a resistance of 0.153 Ωcm2 and 0.286 Ωcm2 at 973 K and 923 K, respectively. On cooling, paramagnetic to ferromagnetic and an incomplete ferromagnetic to antiferromagnetic transition takes place. Different behaviours in field cooled and zero-field-cooled measurements leads to a coexistence of ferromagnetic and antiferromagnetic order.


Original languageEnglish
Pages (from-to)268-274
Number of pages7
JournalJournal of Solid State Chemistry
Early online date15 Mar 2014
Publication statusPublished - May 2014

    Research areas

  • Perovskite, Solid solution, Structure, Neutron powder diffraction, Magnetic properties

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

  3. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  4. Enhanced cycling performance of magnesium doped lithium cobalt phosphate

    Kim, E. J., Miller, D., Irvine, J. T. S. & Armstrong, A. R., 26 Sep 2019, In : ChemElectroChem. 6, 18

    Research output: Contribution to journalArticle

  5. Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell

    Jiang, C., Cui, C., Ma, J. & Irvine, J. T. S., 23 Sep 2019, In : International Journal of Hydrogen Energy. In press

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Solid State Chemistry (Journal)

    Finlay Morrison (Reviewer)
    2010 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. Cs7Sm11[TeO3]12Cl16 and Rb7Nd11[TeO3]12Br16, the new tellurite halides of the tetragonal Rb6LiNd11[SeO3]12Cl16 structure type

    Charkin, D. O., Black, C., Downie, L. J., Sklovsky, D. E., Berdonosov, P. S., Olenev, A. V., Zhou, W., Lightfoot, P. & Dolgikh, V. A., Dec 2015, In : Journal of Solid State Chemistry. 232, p. 56-61

    Research output: Contribution to journalArticle

  2. Structural, thermal and electrical conductivity characteristics of Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell

    Jeong, J., Azad, A. K., Schlegl, H., Kim, B., Baek, S-W., Kim, K., Kang, H. & Kim, J. H., Mar 2015, In : Journal of Solid State Chemistry. 226, p. 154-163 10 p.

    Research output: Contribution to journalArticle

  3. Thermal evolution of the crystal structure of the orthorhombic perovskite LaFeO3

    Dixon, C. A. L., Kavanagh, C. M., Knight, K. S., Kockelmann, W., Morrison, F. D. & Lightfoot, P., Oct 2015, In : Journal of Solid State Chemistry. 230, p. 337-342

    Research output: Contribution to journalArticle

  4. Investigation of the hydrothermal crystallisation of the perovskite solid solution NaCe1-xLaxTi2O6 and its defect chemistry

    Harunsani, M. H., Woodward, D. I., Peel, M., Ashbrook, S. E. M. & Walton, R. I., Nov 2013, In : Journal of Solid State Chemistry. 207, p. 117-125 9 p.

    Research output: Contribution to journalArticle

ID: 106302980