Skip to content

Research at St Andrews

Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity

Research output: Contribution to journalArticle

Standard

Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity. / Zhang, Jing; Rouillon, Christophe; Kerou, Melina; Reeks, Judith; Brugger, Kim; Graham, Shirley; Reimann, Julia; Cannone, Giuseppe; Liu, Huanting; Albers, Sonja-Verena; Naismith, James H.; Spagnolo, Laura; White, Malcolm F.

In: Molecular Cell, Vol. 45, No. 3, 10.02.2012, p. 303-313.

Research output: Contribution to journalArticle

Harvard

Zhang, J, Rouillon, C, Kerou, M, Reeks, J, Brugger, K, Graham, S, Reimann, J, Cannone, G, Liu, H, Albers, S-V, Naismith, JH, Spagnolo, L & White, MF 2012, 'Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity', Molecular Cell, vol. 45, no. 3, pp. 303-313. https://doi.org/10.1016/j.molcel.2011.12.013

APA

Zhang, J., Rouillon, C., Kerou, M., Reeks, J., Brugger, K., Graham, S., ... White, M. F. (2012). Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity. Molecular Cell, 45(3), 303-313. https://doi.org/10.1016/j.molcel.2011.12.013

Vancouver

Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S et al. Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity. Molecular Cell. 2012 Feb 10;45(3):303-313. https://doi.org/10.1016/j.molcel.2011.12.013

Author

Zhang, Jing ; Rouillon, Christophe ; Kerou, Melina ; Reeks, Judith ; Brugger, Kim ; Graham, Shirley ; Reimann, Julia ; Cannone, Giuseppe ; Liu, Huanting ; Albers, Sonja-Verena ; Naismith, James H. ; Spagnolo, Laura ; White, Malcolm F. / Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity. In: Molecular Cell. 2012 ; Vol. 45, No. 3. pp. 303-313.

Bibtex - Download

@article{c54d238dc1494bf1ad45591bcd8e34ec,
title = "Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity",
abstract = "The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse {"}payload{"} of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endo-nucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5' sequence in the crRNA, but not on the presence of a proto-spacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.",
author = "Jing Zhang and Christophe Rouillon and Melina Kerou and Judith Reeks and Kim Brugger and Shirley Graham and Julia Reimann and Giuseppe Cannone and Huanting Liu and Sonja-Verena Albers and Naismith, {James H.} and Laura Spagnolo and White, {Malcolm F}",
year = "2012",
month = "2",
day = "10",
doi = "10.1016/j.molcel.2011.12.013",
language = "English",
volume = "45",
pages = "303--313",
journal = "Molecular Cell",
issn = "1097-2765",
publisher = "Cell Press",
number = "3",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity

AU - Zhang, Jing

AU - Rouillon, Christophe

AU - Kerou, Melina

AU - Reeks, Judith

AU - Brugger, Kim

AU - Graham, Shirley

AU - Reimann, Julia

AU - Cannone, Giuseppe

AU - Liu, Huanting

AU - Albers, Sonja-Verena

AU - Naismith, James H.

AU - Spagnolo, Laura

AU - White, Malcolm F

PY - 2012/2/10

Y1 - 2012/2/10

N2 - The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse "payload" of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endo-nucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5' sequence in the crRNA, but not on the presence of a proto-spacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.

AB - The prokaryotic clusters of regularly interspaced palindromic repeats (CRISPR) system utilizes genomically encoded CRISPR RNA (crRNA), derived from invading viruses and incorporated into ribonucleoprotein complexes with CRISPR-associated (CAS) proteins, to target and degrade viral DNA or RNA on subsequent infection. RNA is targeted by the CMR complex. In Sulfolobus solfataricus, this complex is composed of seven CAS protein subunits (Cmr1-7) and carries a diverse "payload" of targeting crRNA. The crystal structure of Cmr7 and low-resolution structure of the complex are presented. S. solfataricus CMR cleaves RNA targets in an endo-nucleolytic reaction at UA dinucleotides. This activity is dependent on the 8 nt repeat-derived 5' sequence in the crRNA, but not on the presence of a proto-spacer-associated motif (PAM) in the target. Both target and guide RNAs can be cleaved, although a single molecule of guide RNA can support the degradation of multiple targets.

UR - http://ukpmc.ac.uk/articles/PMC3381847

U2 - 10.1016/j.molcel.2011.12.013

DO - 10.1016/j.molcel.2011.12.013

M3 - Article

VL - 45

SP - 303

EP - 313

JO - Molecular Cell

JF - Molecular Cell

SN - 1097-2765

IS - 3

ER -

Related by author

  1. Asymmetric base pair opening drives helicase unwinding dynamics

    Colizzi, F., Perez-Gonzalez, C., Fritzen, R., Levy, Y., White, M. F., Penedo-Esteiro, J. C. & Bussi, G., 5 Nov 2019, In : Proceedings of the National Academy of Sciences of the United States of America. 116, 45, p. 22471-22477 7 p.

    Research output: Contribution to journalArticle

  2. Cyclic oligoadenylate signalling mediates Mycobacterium tuberculosis CRISPR defence

    Grüschow, S., Athukoralage, J. S., Graham, S., Hoogeboom, T. & White, M. F., 26 Sep 2019, In : Nucleic Acids Research. 47, 17, p. 9259-9270 12 p.

    Research output: Contribution to journalArticle

  3. A type III CRISPR ancillary ribonuclease degrades its cyclic oligoadenylate activator

    Athukoralage, J. S., Graham, S., Grüschow, S., Rouillon, C. & White, M. F., 12 Jul 2019, In : Journal of Molecular Biology. 431, 15, p. 2894-2899

    Research output: Contribution to journalArticle

  4. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems

    Rouillon, C., Athukoralage, J. S., Graham, S., Grüschow, S. & White, M. F., 1 Jan 2019, Methods in Enzymology. Bailey, S. (ed.). Academic Press Inc., p. 191-218 28 p. (Methods in Enzymology; vol. 616).

    Research output: Chapter in Book/Report/Conference proceedingChapter

  5. Ring nucleases deactivate Type III CRISPR ribonucleases by degrading cyclic oligoadenylate

    Athukoralage, J. S., Rouillon, C., Graham, S., Grüschow, S. & White, M. F., 11 Oct 2018, In : Nature. 562, 7726, p. 277-280 16 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signalling after nuclear DNA damage

    Dunphy, G., Flannery, S. M., Almine, J. F., Connolly, D. J., Paulus, C., Jonsson, K. L., Jakobsen, M. R., Nevels, M. M., Bowie, A. G. & Unterholzner, L., 6 Sep 2018, In : Molecular Cell. 71, 5, p. 745-760 22 p., e5.

    Research output: Contribution to journalArticle

  2. Structure of the CRISPR Interference complex CSM reveals key similarities with Cascade

    Rouillon, C., Zhou, M., Zhang, J., Argyris, P., Beilsten-Edmands, V., Cannone, G., Graham, S., Robinson, C., Spagnolo, L. & White, M. F., 10 Oct 2013, In : Molecular Cell. 52, 1, p. 124-134 11 p.

    Research output: Contribution to journalArticle

  3. The Histone Chaperones Nap1 and Vps75 Bind Histones H3 and H4 in a Tetrameric Conformation

    Bowman, A., Ward, R., Wiechens, N., Singh, V., El Mkami, H., Norman, D. G. & Owen-Hughes, T., 18 Feb 2011, In : Molecular Cell. 41, 4, p. 398-408 11 p.

    Research output: Contribution to journalArticle

  4. ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance.

    Parish, J. L., Bean, AM., Park, RB. & Androphy, EJ., 28 Dec 2006, In : Molecular Cell. 24, 6, p. 867-876 10 p.

    Research output: Contribution to journalArticle

ID: 18094393

Top