Skip to content

Research at St Andrews

Structure and properties of nonstoichiometric mixed perovskites A31+x2-xO9-d

Research output: Contribution to journalArticlepeer-review

Author(s)

School/Research organisations

Abstract

Nonstoichiometric mixed perovskites A(3)A(1 + x)'B2 - x''O9 - delta, e.g. Ba3Ca1.18Nb1.82O9 - delta, exhibit high proton and oxygen-ion conductivity. It is expected that mixed ionic and electronic conductors may be found in these compounds if the B-sites are partially substituted by a first row transition element. These mixed conductors may be potential anode materials for fuel cell applications. The structure of single phase SrCu0.4Nb0.6O2.9 was studied by both X-ray and neutron diffraction. It is tetragonal with space group P4/mmm (123), a=3.9608(4) Angstrom, c=3.9757(2) Angstrom, V=62.37(2) Angstrom(3) according to neutron diffraction. Rietveld refinement indicates that the oxygen vacancy tends to stay at O-1 (1c) site with O-2 (2e) fully occupied. AC impedance measurements indicate that electronic conduction is probably dominant in air. The DC conductivity of SrCu0.4Nb0.6O2.9 at pO(2) in the range of 10 (- 22)-10 (- 12) atm exhibits a p(O-2) - 1/4 dependence consistent with n-type electronic conduction. The material was unstable in 5% H-2 at elevated temperatures but stable in argon at 900 degreesC. Using manganese instead of copper, a phase that is redox stable was prepared. SrMn0.4Nb0.6O3 - delta exhibits an orthorhombic structure with space group Pbnm (62), 3 a = 5.6451(3) Angstrom, b = 5.6589(2) Angstrom, c = 7.9729(2) Angstrom, V = 254.69(7) Angstrom(3) according to X-ray diffraction. Such a unit cell indicates that it is a double perovskite and therefore the formula is better written as Sr2Mn0.8Nb1.2O6 - delta. The material maintains perovskite structure in 5% H-2 although thermal expansion was observed on reduction. The conductivity of Sr2Mn0.8Nb1.2O6 is 0.36 S/cm in air at 900 degreesC. Conductivity decreases in 5% H-2 indicates p-type conduction at low pO(2). (C) 2002 Elsevier Science B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)659-667
Number of pages9
JournalSolid State Ionics
Volume154-155
Publication statusPublished - Dec 2002

    Research areas

  • electrical conductivity, perovskite structure, neutron diffraction, stability, fuel cell, defect, ELECTRICAL-CONDUCTIVITY, COMPLEX PEROVSKITE, SOLID ELECTROLYTE, TEMPERATURE, STABILITY, SERIES, OXIDES, CELL

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticlepeer-review

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 1 Jan 2021, In: Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticlepeer-review

  4. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In: Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticlepeer-review

  5. Perovskite oxynitride solid solutions of LaTaON2-CaTaO2N with greatly enhanced photogenerated charge separation for solar-driven overall water splitting

    Wang, Y., Kang, Y., Zhu, H., Liu, G., Irvine, J. T. S. & Xu, X., 25 Nov 2020, In: Advanced Science . Early View, 8 p., 2003343.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In: Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticlepeer-review

  2. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

  3. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In: Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticlepeer-review

  4. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In: Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

  5. Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient LaxSr1 − 3x/2TiO3

    Hui, J., Neagu, D., Miller, D. N., Yue, X., Ni, C. & Irvine, J. T. S., Feb 2018, In: Solid State Ionics. 315, p. 126-130 5 p.

    Research output: Contribution to journalArticlepeer-review

ID: 197487

Top