Skip to content

Research at St Andrews

Structure of the CRISPR Interference complex CSM reveals key similarities with Cascade

Research output: Contribution to journalArticlepeer-review

Author(s)

Christophe Rouillon, Min Zhou, Jing Zhang, Politis Argyris, Victoria Beilsten-Edmands, Guiseppe Cannone, Shirley Graham, Carol Robinson, Laura Spagnolo, Malcolm F White

School/Research organisations

Abstract

The Clustered Regularly Interspaced Palindromic Repeats (CRISPR) system is an adaptive immune system in prokaryotes. Interference complexes encoded by CRISPR-associated (cas) genes utilize small RNAs for homology-directed detection and subsequent degradation of invading genetic elements, and they have been classified into three main types (I–III). Type III complexes share the Cas10 subunit but are subclassifed as type IIIA (CSM) and type IIIB (CMR), depending on their specificity for DNA or RNA targets, respectively. The role of CSM in limiting the spread of conjugative plasmids in Staphylococcus epidermidis was first described in 2008. Here, we report a detailed investigation of the composition and structure of the CSM complex from the archaeon Sulfolobus solfataricus, using a combination of electron microscopy, mass spectrometry, and deep sequencing. This reveals a three-dimensional model for the CSM complex that includes a helical component strikingly reminiscent of the backbone structure of the type I (Cascade) family.
Close

Details

Original languageEnglish
Pages (from-to)124-134
Number of pages11
JournalMolecular Cell
Volume52
Issue number1
Early online date10 Oct 2013
DOIs
Publication statusPublished - 10 Oct 2013

    Research areas

  • Clustered Regularly Interspaced Palindromic Repeats (CRISPR) system, Immune system, Prokaryotes, CSM complex , Sulfolobus solfataricus , Cascade complex , Methylation, Acetylation, Phosphorylation

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence

    Zhu, W., McQuarrie, S. J., Gruschow, S., McMahon, S., Graham, S., Gloster, T. & White, M., 15 Feb 2021, In: Nucleic Acids Research. Advance Article, 13 p., gkab073.

    Research output: Contribution to journalArticlepeer-review

  2. Facile and scalable expression and purification of transcription factor IIH (TFIIH) core complex

    Sanles-Falagan, R., Petrovic-Stojanovska, B. & White, M. F., Oct 2020, In: Protein Expression and Purification. 174, 105660.

    Research output: Contribution to journalArticlepeer-review

  3. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage

    Athukoralage, J. S., McQuarrie, S. J., Gruschow, S., Graham, S., Gloster, T. & White, M., 20 Jul 2020, In: eLife. 9, 19 p., e57627.

    Research output: Contribution to journalArticlepeer-review

  4. Bacteria SAVED from viruses

    White, M. F., 9 Jul 2020, In: Cell. 182, 1, p. 5-6 2 p.

    Research output: Contribution to journalArticlepeer-review

  5. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence

    Samolygo, A., Athukoralage, J. S., Graham, S. & White, M., 19 Jun 2020, In: Nucleic Acids Research. 48, 11, p. 6149–6156 8 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. DNA damage-induced nucleosome depletion enhances homology search independently of local break movement

    Cheblal, A., Challa, K., Seeber, A., Shimada, K., Yoshida, H., Ferreira, H. C., Amitai, A. & Gasser, S. M., 15 Oct 2020, In: Molecular Cell. 80

    Research output: Contribution to journalArticlepeer-review

  2. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signalling after nuclear DNA damage

    Dunphy, G., Flannery, S. M., Almine, J. F., Connolly, D. J., Paulus, C., Jonsson, K. L., Jakobsen, M. R., Nevels, M. M., Bowie, A. G. & Unterholzner, L., 6 Sep 2018, In: Molecular Cell. 71, 5, p. 745-760 22 p., e5.

    Research output: Contribution to journalArticlepeer-review

  3. Structure and mechanism of the CMR complex for CRISPR-Mediated antiviral immunity

    Zhang, J., Rouillon, C., Kerou, M., Reeks, J., Brugger, K., Graham, S., Reimann, J., Cannone, G., Liu, H., Albers, S-V., Naismith, J. H., Spagnolo, L. & White, M. F., 10 Feb 2012, In: Molecular Cell. 45, 3, p. 303-313 11 p.

    Research output: Contribution to journalArticlepeer-review

  4. The Histone Chaperones Nap1 and Vps75 Bind Histones H3 and H4 in a Tetrameric Conformation

    Bowman, A., Ward, R., Wiechens, N., Singh, V., El Mkami, H., Norman, D. G. & Owen-Hughes, T., 18 Feb 2011, In: Molecular Cell. 41, 4, p. 398-408 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 73771592

Top