Skip to content

Research at St Andrews

Study on direct flame solid oxide fuel cell using flat burner and ethylene flame

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Author(s)

M.M. Hossain, J. Myung, R. Lan, M. Cassidy, I. Burns, S.W. Tao, J.T.S. Irvine

School/Research organisations

Abstract

This paper presents an experimental investigation of direct flame solid oxide fuel cell (SOFC) by using a flat-flame burner and fuel-rich ethylene/air premixed flames. A direct flame fuel cell (DFFC) setup is designed and implemented to measure electrochemical characteristics of electrolyte supported (i.e., single cell consisting of Ce0.9Ni0.1O2-δ anode/GDC electrolyte/LSCF-GDC cathode) fuel cell. The fuel cell temperature and cell performance were investigated by operating various fuel/air equivalence ratios and varying distance between burner surface and the fuel cell. A maximum power density of 41 mW/cm2 and current density of 121 mA/cm2 were achieved. Experimental results suggest that the fuel cell performance was greatly influenced by the flame operating conditions and cell position in the flame. The uniformity of the flame temperature and the fuel cell stability were also investigated and calculations of equilibrium gas species composition were performed.
Close

Details

Original languageEnglish
Title of host publication14th International Symposium on Solid Oxide Fuel Cells, SOFC 2015
EditorsK. Eguchi, S. C. Singhal
PublisherElectrochemical Society
Pages1989-1999
Number of pages11
ISBN (Print)9781607685395
DOIs
Publication statusPublished - 2015

Publication series

NameECS Transactions
PublisherElectrochemical Society
Number1
Volume68
ISSN (Print)1938-5862

    Research areas

  • Electrodes, Electrolytes, Ethylene, Fuel cells, Fuel storage, Solid electrolytes, Electrochemical characteristics, Equivalence ratios, Experimental investigations, Fuel cell performance, Fuel cell stability, Fuel cell temperature, Maximum power density, Operating condition

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Apr 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  2. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 14 Aug 2019, In : Journal of Alloys and Compounds. In press

    Research output: Contribution to journalArticle

  3. Photo-catalytic hydrogen production over Au/g-C3N4: effect of gold particle dispersion and morphology

    Caux, M., Menard, H., AlSalik, Y. M., Irvine, J. T. S. & Idriss, H., 7 Aug 2019, In : Physical Chemistry Chemical Physics. 21, 29, p. 15974-15987 14 p.

    Research output: Contribution to journalArticle

  4. In situ thermal battery discharge using CoS2 as a cathode material

    Payne, J. L., Percival, J. D., Giagloglou, K., Crouch, C., Carins, G. M., Smith, R., Gover, R. & Irvine, J. T. S., 2 Aug 2019, In : Journal of The Electrochemical Society. 166, 12, p. A2660-A2664 5 p.

    Research output: Contribution to journalArticle

  5. Using cellulose polymorphs for enhanced hydrogen production from photocatalytic reforming

    Chang, C., Skillen, N., Nagarajan, S., Ralphs, K., Irvine, J. T. S., Lawton, L. & Robertson, P. K. J., 1 Aug 2019, In : Sustainable Energy & Fuels. 3, 8, p. 1971-1975 5 p.

    Research output: Contribution to journalArticle

ID: 213575308