Skip to content

Research at St Andrews

Study on direct flame solid oxide fuel cell using flat burner and ethylene flame

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Author(s)

M.M. Hossain, J. Myung, R. Lan, M. Cassidy, I. Burns, S.W. Tao, J.T.S. Irvine

School/Research organisations

Abstract

This paper presents an experimental investigation of direct flame solid oxide fuel cell (SOFC) by using a flat-flame burner and fuel-rich ethylene/air premixed flames. A direct flame fuel cell (DFFC) setup is designed and implemented to measure electrochemical characteristics of electrolyte supported (i.e., single cell consisting of Ce0.9Ni0.1O2-δ anode/GDC electrolyte/LSCF-GDC cathode) fuel cell. The fuel cell temperature and cell performance were investigated by operating various fuel/air equivalence ratios and varying distance between burner surface and the fuel cell. A maximum power density of 41 mW/cm2 and current density of 121 mA/cm2 were achieved. Experimental results suggest that the fuel cell performance was greatly influenced by the flame operating conditions and cell position in the flame. The uniformity of the flame temperature and the fuel cell stability were also investigated and calculations of equilibrium gas species composition were performed.
Close

Details

Original languageEnglish
Title of host publication14th International Symposium on Solid Oxide Fuel Cells, SOFC 2015
EditorsK. Eguchi, S. C. Singhal
PublisherElectrochemical Society
Pages1989-1999
Number of pages11
ISBN (Print)9781607685395
DOIs
Publication statusPublished - 2015

Publication series

NameECS Transactions
PublisherElectrochemical Society
Number1
Volume68
ISSN (Print)1938-5862

    Research areas

  • Electrodes, Electrolytes, Ethylene, Fuel cells, Fuel storage, Solid electrolytes, Electrochemical characteristics, Equivalence ratios, Experimental investigations, Fuel cell performance, Fuel cell stability, Fuel cell temperature, Maximum power density, Operating condition

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 31 Aug 2020, In : Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticle

  2. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 28 Sep 2020, In : Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticle

  3. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 20 Oct 2020, In : Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticle

  4. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation

    Pestana, C. J., Portela Noronha, J., Hui, J., Edwards, C., Gunaratne, H. Q. N., Irvine, J. T. S., Robertson, P. K. J., Capelo-Neto, J. & Lawton, L. A., 25 Nov 2020, In : Science of the Total Environment. 745, 141154.

    Research output: Contribution to journalArticle

  5. Perovskite oxynitride solid solutions of LaTaON2-CaTaO2N with greatly enhanced photogenerated charge separation for solar-driven overall water splitting

    Wang, Y., Kang, Y., Zhu, H., Liu, G., Irvine, J. T. S. & Xu, X., 25 Nov 2020, In : Advanced Science . Early View, 8 p., 2003343.

    Research output: Contribution to journalArticle

ID: 213575308

Top