Skip to content

Research at St Andrews

Switching on electrocatalytic activity in solid oxide cells

Research output: Contribution to journalArticlepeer-review

DOI

Open Access permissions

Open

Author(s)

Jaeha Myung, Dragos Neagu, David N. Miller, John T. S. Irvine

School/Research organisations

Abstract

Solid oxide cells (SOCs) can operate with high efficiency in two ways—as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes—the fuel and air electrodes—separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated, they are susceptible to many other forms of degradation. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of simple, almost instantaneous production of highly active nanostructures for reinvigorating SOCs during operation.
Close

Details

Original languageEnglish
Pages (from-to)528–531
Number of pages15
JournalNature
Volume537
Issue number7621
Early online date22 Aug 2016
DOIs
Publication statusPublished - 22 Sep 2016

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Enhancing electrochemical CO2 reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells

    Lee, S., Kim, M., Lee, K. T., Irvine, J. T. S. & Shin, T. H., 12 May 2021, In: Advanced Energy Materials. Early View, 12 p., 2100339.

    Research output: Contribution to journalArticlepeer-review

  2. Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures

    Price, R., Weissen, U., Grolig, J. G., Cassidy, M., Mai, A. & Irvine, J. T. S., 8 Apr 2021, In: Journal of Materials Chemistry A. 15 p.

    Research output: Contribution to journalArticlepeer-review

  3. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  4. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  5. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

Related by journal

  1. Nature (Journal)

    Will Cresswell (Reviewer)

    21 Dec 2017

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  2. Nature (Journal)

    Will Cresswell (Reviewer)

    11 Nov 2017

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  3. Nature (Journal)

    David Gerard Dritschel (Editor)

    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  4. Nature (Journal)

    Ifor David William Samuel (Editor)

    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. A 200-million year delay in permanent atmospheric oxygenation

    Poulton, S., Bekker, A., Cumming, V., Zerkle, A. L., Canfield, D. & Johnston, D., 29 Mar 2021, In: Nature. 17 p.

    Research output: Contribution to journalArticlepeer-review

  2. Giant nonlinear optical responses from photon-avalanching nanoparticles

    Lee, C., Xu, E. Z., Liu, Y., Teitelboim, A., Yao, K., Fernandez-Bravo, A., Kotulska, A. M., Nam, S. H., Suh, Y. D., Bednarkiewicz, A., Cohen, B. E., Chan, E. M. & Schuck, P. J., 14 Jan 2021, In: Nature. 589, 7841, p. 230-235 6 p., 589.

    Research output: Contribution to journalArticlepeer-review

  3. Projected land ice contributions to twenty-first-century sea level rise

    Edwards, T. L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., Jourdain, N. C., Slater, D. A., Turner, F. E., Smith, C. J., McKenna, C. M., Simon, E., Abe-Ouchi, A., Gregory, J. M., Larour, E., Lipscomb, W. H., Payne, A. J., Shepherd, A., Agosta, C., Alexander, P. & 64 others, Albrecht, T., Anderson, B., Asay-Davis, X., Aschwanden, A., Barthel, A., Bliss, A., Calov, R., Chambers, C., Champollion, N., Choi, Y., Cullather, R., Cuzzone, J., Dumas, C., Felikson, D., Fettweis, X., Fujita, K., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huss, M., Huybrechts, P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P., Le clec’h, S., Lee, V., Leguy, G. R., Little, C. M., Lowry, D. P., Malles, J-H., Martin, D. F., Maussion, F., Morlighem, M., O’Neill, J. F., Nias, I., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Radić, V., Reese, R., Rounce, D. R., Rückamp, M., Sakai, A., Shafer, C., Schlegel, N-J., Shannon, S., Smith, R. S., Straneo, F., Sun, S., Tarasov, L., Trusel, L. D., Van Breedam, J., van de Wal, R., van den Broeke, M., Winkelmann, R., Zekollari, H., Zhao, C., Zhang, T. & Zwinger, T., 6 May 2021, In: Nature. 593, 7857, p. 74-82 9 p.

    Research output: Contribution to journalArticlepeer-review

  4. Towards complete and error-free genome assemblies of all vertebrate species

    Vertebrate Genome Project, Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., Uliano-Silva, M., Chow, W., Fungtammasan, A., Kim, J., Lee, C., Ko, B. J., Chaisson, M., Gedman, G. L., Cantin, L. J., Thibaud-Nissen, F., Haggerty, L., Bista, I., Smith, M. & 30 others, Haase, B., Mountcastle, J., Winkler, S., Paez, S., Howard, J., Vernes, S. C., Lama, T. M., Grutzner, F., Warren, W. C., Balakrishnan, C. N., Burt, D., George, J. M., Biegler, M. T., Iorns, D., Digby, A., Eason, D., Robertson, B., Edwards, T., Wilkinson, M., Turner, G., Meyer, A., Kautt, A. F., Franchini, P., Detrich, H. W., Svardal, H., Wagner, M., Naylor, G. J. P., Pippel, M., Malinsky, M. & Mooney, M., 28 Apr 2021, In: Nature. 592, 7856, p. 737-746 10 p.

    Research output: Contribution to journalArticlepeer-review

ID: 245404838

Top