Skip to content

Research at St Andrews

Symmetric subgroups in modular group algebras

Research output: Contribution to journalArticlepeer-review

Abstract

Let V(KG) be a normalised unit group of the modular group algebra of a finite p-group G over the field K of p elements. We introduce a notion of symmetric subgroups in V(KG) as subgroups invariant under the action of the classical involution of the group algebra KG. We study properties of symmetric subgroups and construct a counterexample to the conjecture by V.Bovdi, which states that V(KG)=<G,S*>, where S* is a set of symmetric units of V(KG).
Close

Details

Original languageEnglish
Number of pages5
JournalNauk. Visn. Uzhgorod. Univ., Ser. Mat.,
Volume9
Publication statusPublished - 5 Jan 2008

    Research areas

  • math.RA, math.GR, 16S34, 20C05, Rings and Algebras, Group Theory

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. GAP – Groups, Algorithms, and Programming, Version 4.11.1

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 2 Mar 2021

    Research output: Non-textual formSoftware

  2. Using Jupyter for reproducible scientific workflows

    Beg, M., Belin, J., Kluyver, T., Konovalov, A., Ragan-Kelley, M., Thiery, N. & Fangohr, H., 15 Jan 2021, In: Computing in Science and Engineering. Early Access, 11 p.

    Research output: Contribution to journalArticlepeer-review

  3. GAP – Groups, Algorithms, and Programming, Version 4.11.0

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 29 Feb 2020

    Research output: Non-textual formSoftware

ID: 4381154

Top