Skip to content

Research at St Andrews

Symmetric subgroups in modular group algebras

Research output: Contribution to journalArticlepeer-review

Standard

Symmetric subgroups in modular group algebras. / Konovalov, Alexander; Krivokhata, A. G.

In: Nauk. Visn. Uzhgorod. Univ., Ser. Mat., Vol. 9, 05.01.2008.

Research output: Contribution to journalArticlepeer-review

Harvard

Konovalov, A & Krivokhata, AG 2008, 'Symmetric subgroups in modular group algebras', Nauk. Visn. Uzhgorod. Univ., Ser. Mat., vol. 9.

APA

Konovalov, A., & Krivokhata, A. G. (2008). Symmetric subgroups in modular group algebras. Nauk. Visn. Uzhgorod. Univ., Ser. Mat., 9.

Vancouver

Konovalov A, Krivokhata AG. Symmetric subgroups in modular group algebras. Nauk. Visn. Uzhgorod. Univ., Ser. Mat.,. 2008 Jan 5;9.

Author

Konovalov, Alexander ; Krivokhata, A. G. / Symmetric subgroups in modular group algebras. In: Nauk. Visn. Uzhgorod. Univ., Ser. Mat.,. 2008 ; Vol. 9.

Bibtex - Download

@article{92bb6d0e23c64982bc2488f0bdc3aa62,
title = "Symmetric subgroups in modular group algebras",
abstract = "Let V(KG) be a normalised unit group of the modular group algebra of a finite p-group G over the field K of p elements. We introduce a notion of symmetric subgroups in V(KG) as subgroups invariant under the action of the classical involution of the group algebra KG. We study properties of symmetric subgroups and construct a counterexample to the conjecture by V.Bovdi, which states that V(KG)=<G,S*>, where S* is a set of symmetric units of V(KG).",
keywords = "math.RA, math.GR, 16S34, 20C05, Rings and Algebras, Group Theory",
author = "Alexander Konovalov and Krivokhata, {A. G.}",
note = "This preprint is translated from the original journal publication in Russian: A. Konovalov and A. Tsapok, Symmetric subgroups of the normalised unit group of the modular group algebra of a finite p-group, Nauk. Visn. Uzhgorod. Univ., Ser. Mat., 9 (2004), 20–24.",
year = "2008",
month = jan,
day = "5",
language = "English",
volume = "9",
journal = "Nauk. Visn. Uzhgorod. Univ., Ser. Mat.,",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Symmetric subgroups in modular group algebras

AU - Konovalov, Alexander

AU - Krivokhata, A. G.

N1 - This preprint is translated from the original journal publication in Russian: A. Konovalov and A. Tsapok, Symmetric subgroups of the normalised unit group of the modular group algebra of a finite p-group, Nauk. Visn. Uzhgorod. Univ., Ser. Mat., 9 (2004), 20–24.

PY - 2008/1/5

Y1 - 2008/1/5

N2 - Let V(KG) be a normalised unit group of the modular group algebra of a finite p-group G over the field K of p elements. We introduce a notion of symmetric subgroups in V(KG) as subgroups invariant under the action of the classical involution of the group algebra KG. We study properties of symmetric subgroups and construct a counterexample to the conjecture by V.Bovdi, which states that V(KG)=<G,S*>, where S* is a set of symmetric units of V(KG).

AB - Let V(KG) be a normalised unit group of the modular group algebra of a finite p-group G over the field K of p elements. We introduce a notion of symmetric subgroups in V(KG) as subgroups invariant under the action of the classical involution of the group algebra KG. We study properties of symmetric subgroups and construct a counterexample to the conjecture by V.Bovdi, which states that V(KG)=<G,S*>, where S* is a set of symmetric units of V(KG).

KW - math.RA

KW - math.GR

KW - 16S34

KW - 20C05

KW - Rings and Algebras

KW - Group Theory

UR - http://arxiv.org/abs/0801.0809

M3 - Article

VL - 9

JO - Nauk. Visn. Uzhgorod. Univ., Ser. Mat.,

JF - Nauk. Visn. Uzhgorod. Univ., Ser. Mat.,

ER -

Related by author

  1. GAP – Groups, Algorithms, and Programming, Version 4.11.1

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 2 Mar 2021

    Research output: Non-textual formSoftware

  2. Using Jupyter for reproducible scientific workflows

    Beg, M., Belin, J., Kluyver, T., Konovalov, A., Ragan-Kelley, M., Thiery, N. & Fangohr, H., 15 Jan 2021, In: Computing in Science and Engineering. Early Access, 11 p.

    Research output: Contribution to journalArticlepeer-review

  3. GAP – Groups, Algorithms, and Programming, Version 4.11.0

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 29 Feb 2020

    Research output: Non-textual formSoftware

ID: 4381154

Top