Skip to content

Research at St Andrews

Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs

Research output: Contribution to journalArticle

DOI

Author(s)

S W Tao, J T S Irvine

School/Research organisations

Abstract

Perovskite-related materials, (La0.75Sr0.25)1–xCr0.5Mn0.5O3–( 0 ≤ x ≤ 0.1) (LSCM), have been synthesised and examined as potential anode materials for solid oxide fuel cells (SOFCs). La0.75Sr0.25Cr0.5Mn0.5O3 exhibits a rhombohedral structure. It appears to be chemically compatible with yttria-stabilized zirconia (YSZ) to at least 1300°C. At 900°C, its electrical conductivity is about 38 S/cm in air and 1.5 S/cm in 5% H2 (pO210–21 atm). Good performance was achieved using LSCM as anode with a polarization resistance 0.9 and 0.47 Ω cm2 in wet 5% H2/Ar and wetH2, respectively. The anode polarization was further reduced to 0.6 and 0.25 Ω cm2 in wet 5% H2/Ar and wetH2 when a thin layer of Ce0.8Gd0.2O2–(CGO) layer was coated between YSZ and LSCM anode. Stable performance was sustained for at least for 4 h operating in wet methane. By improving the electrode microstructure, the electrode polarization resistance approaches 0.2 Ω cm2 at 900°C in 97% H2/3% H2O for LSCM containing a small amount of YSZ to improve adherence but without CGO. Very good performance is achieved for methane without using excess steam. Using ambient humidification (i.e., 3% H2O), the same performance is achieved with methane at 950°C as for hydrogen at 850°C. The anode is stable in both fuel and air conditions and shows stable electrode performance in methane. Thus, both redox stability and operation in low-steam hydrocarbons have been demonstrated, overcoming two of the major limitations of the current generation of nickel zirconia cermet SOFC anodes. LSCM and other complex perovskites are promising anode materials for SOFCs. (C) 2004 The Electrochemical Society.

Close

Details

Original languageEnglish
Pages (from-to)A252-A259
Number of pages8
JournalJournal of The Electrochemical Society
Volume151
Issue number2
DOIs
Publication statusPublished - Feb 2004

    Research areas

  • OXIDE FUEL-CELLS, BRONZE TYPE PHASES, ELECTRONIC CONDUCTION, ELECTRICAL-PROPERTIES, POTENTIAL ANODE, PERFORMANCE, OXIDATION, METHANE, TEMPERATURE, STABILITY

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide

    Kim, E. J., Ma, L. A., Duda, L. C., Pickup, D. M., Chadwick, A. V., Younesi, R., Irvine, J. T. S. & Armstrong, R., 6 Jan 2020, In : ACS Applied Energy Materials. Early View

    Research output: Contribution to journalArticle

  3. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  4. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  5. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

Related by journal

  1. In situ thermal battery discharge using CoS2 as a cathode material

    Payne, J. L., Percival, J. D., Giagloglou, K., Crouch, C., Carins, G. M., Smith, R., Gover, R. & Irvine, J. T. S., 2 Aug 2019, In : Journal of The Electrochemical Society. 166, 12, p. A2660-A2664 5 p.

    Research output: Contribution to journalArticle

  2. Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteries

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R. K. B., Connor, P. A. & Irvine, J. T. S., 14 Nov 2018, In : Journal of The Electrochemical Society. 165, 14, p. A3510-A3516

    Research output: Contribution to journalArticle

  3. Synthesis and electrochemical study of CoNi2S4 as a novel cathode material in a primary Li thermal battery

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R., Connor, P. A. & Irvine, J. T. S., 25 Jul 2017, In : Journal of The Electrochemical Society. 164, 9, p. A2159-A2163

    Research output: Contribution to journalArticle

ID: 735520

Top