Skip to content

Research at St Andrews

Synthesis and lithium-storage properties of MnO/reduced graphene oxide composites derived from graphene oxide plus the transformation of Mn(vi) to Mn(ii) by the reducing power of graphene oxide

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Guixia Zhao, Xiubing Huang, X. Wang, Paul Alexander Connor, J. Li, S. Zhang, John Thomas Sirr Irvine

School/Research organisations

Abstract

In this report, a novel method is proposed to prepare MnO/reduced graphene oxide (rGO) composites via calcining the precursors (i.e. δ-MnO2/graphene oxide composites) at 500 °C in Ar using no external reducing gas, in which graphene oxide (GO) successfully serves as a reductant by releasing CO during its thermolysis for the first time. By controlling the initial ratios of GO to KMnO4, differently composed precursors can be obtained via the redox reaction between GO and KMnO4, then leading to the formation of composites with different MnO/rGO ratios and dispersion of MnO on the rGO surface (denoted as MGC1 and MGC2). When applied as an active material in lithium ion batteries, MGC1 shows excellent cycling performance and capacity retention. Under 100 and 200 mA g−1, MGC1 could deliver reversible capacities as high as 900 and 750 mA h g−1, respectively, after more than 100 cycles. Considering the simple operation and low energy consumption in the whole material synthesis processes, the present strategy is feasible and effective for practical application. Even more importantly, the reductibility of graphene oxide upon thermolysis is utilized for the first time, which is meaningful for its extension in synthesis of functional nanomaterials.

Close

Details

Original languageEnglish
Pages (from-to)297-303
Number of pages7
JournalJournal of Materials Chemistry A
Volume3
Issue number1
Early online date31 Oct 2014
DOIs
Publication statusPublished - 7 Jan 2015

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Nanostructured perovskite solar cells

    McDonald, C., Ni, C., Maguire, P., Connor, P., Irvine, J. T. S., Mariotti, D. & Svrcek, V., 18 Oct 2019, In : Nanomaterials. 9, 10, 28 p., 1481.

    Research output: Contribution to journalArticle

  2. Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteries

    Giagloglou, K., Payne, J. L., Crouch, C., Gover, R. K. B., Connor, P. A. & Irvine, J. T. S., 14 Nov 2018, In : Journal of The Electrochemical Society. 165, 14, p. A3510-A3516

    Research output: Contribution to journalArticle

  3. The reduction properties of M-doped (M=Zr, Gd) CeO2/YSZ scaffolds co-infiltrated with nickel

    Maher, R. C., Kerherve, G., Payne, D. J., Yue, X., Connor, P. A., Irvine, J. & Cohen, L. F., 11 Sep 2018, In : Energy Technology. 6, 10, p. 2045-2052

    Research output: Contribution to journalArticle

  4. Tailoring SOFC electrode microstructures for improved performance

    Connor, P. A., Yue, X., Savaniu, C. D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D. J., Maher, R. C., Cohen, L. F., Tomov, R. I., Glowacki, B. A., Kumar, R. V. & Irvine, J. T. S., 16 Aug 2018, In : Advanced Energy Materials. 8, 23, 1800120.

    Research output: Contribution to journalArticle

  5. Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels

    Li, S., Jiang, C., Liu, J., Tao, H., Meng, X., Connor, P., Hui, J., Wang, S., Ma, J. & Irvine, J. T. S., 15 Apr 2018, In : Journal of Power Sources. 383, p. 10-16 7 p.

    Research output: Contribution to journalArticle

Related by journal

  1. A new layered MWW zeolite synthesized with the bifunctional surfactant template and the updated classification of layered zeolite forms obtained by direct synthesis

    Grzybek, J., Roth, W. J., Gil, B., Korzeniowska, A., Mazur, M., Čejka, J. & Morris, R. E., 7 Apr 2019, In : Journal of Materials Chemistry A. 7, 13, p. 7701-7709 9 p.

    Research output: Contribution to journalArticle

  2. Exsolution of Fe-Ni alloy nanoparticles from (La,Sr)(Cr,Fe,Ni)O3 perovskites as potential oxygen transport membrane catalysts for methane reforming

    Papargyriou, D., Miller, D. N. & Irvine, J. T. S., 14 Jul 2019, In : Journal of Materials Chemistry A. 7, 26, p. 15812-15822 11 p.

    Research output: Contribution to journalArticle

  3. Ultrafast post-synthetic modification of a pillared cobalt(II)-based metal-organic framework via sulfurization of its pores for high-performance supercapacitors

    Abazari, R., Sanati, S., Morsali, A., Slawin, A. M. Z., Carpenter-Warren, C. L., Chen, W. & Zheng, A., 21 May 2019, In : Journal of Materials Chemistry A. 7, 19, p. 11953-11966 14 p.

    Research output: Contribution to journalArticle

  4. A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells

    Hou, J., Miao, L., Hui, J., Bi, L., Liu, W. & Irvine, J. T. S., 14 Jun 2018, In : Journal of Materials Chemistry A. 6, 22, p. 10411-10420 10 p.

    Research output: Contribution to journalArticle

ID: 160060996

Top