Skip to content

Research at St Andrews

Systematic variation in the pattern of gene paralog retention between the teleost superorders Ostariophysi and Acanthopterygii

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

Teleost fish underwent whole-genome duplication around 450 Ma followed by diploidization and loss of 80-85% of the duplicated genes. To identify a deep signature of this teleost-specific whole-genome duplication (TSGD), we searched for duplicated genes that were systematically and uniquely retained in one or other of the superorders Ostariophysi and Acanthopterygii. TSGD paralogs comprised 17-21% of total gene content. Some 2.6% (510) of TSGD paralogs were present as pairs in the Ostariophysi genomes of Danio rerio (Cypriniformes) and Astyanax mexicanus (Characiformes) but not in species from four orders of Acanthopterygii (Gasterosteiformes, Gasterosteus aculeatus; Tetraodontiformes, Tetraodon nigroviridis; Perciformes, Oreochromis niloticus; and Beloniformes, Oryzias latipes) where a single copy was identified. Similarly, 1.3% (418) of total gene number represented cases where TSGD paralogs pairs were systematically retained in the Acanthopterygian but conserved as a single copy in Ostariophysi genomes. We confirmed the generality of these results by phylogenetic and synteny analysis of 40 randomly selected linage-specific paralogs (LSPs) from each superorder and completed with the transcriptomes of three additional Ostariophysi species (Ictalurus punctatus [Siluriformes], Sinocyclocheilus species [Cypriniformes], and Piaractus mesopotamicus [Characiformes]). No chromosome bias was detected in TSGD paralog retention. Gene ontology (GO) analysis revealed significant enrichment of GO terms relative to the human GO SLIM database for "growth," "Cell differentiation," and "Embryo development" in Ostariophysi and for "Transport," "Signal Transduction," and "Vesicle mediated transport" in Acanthopterygii. The observed patterns of paralog retention are consistent with different diploidization outcomes having contributed to the evolution/diversification of each superorder.
Close

Details

Original languageEnglish
Pages (from-to)981-7
Number of pages7
JournalGenome Biology and Evolution
Volume6
Issue number4
Early online date14 Apr 2014
DOIs
Publication statusPublished - Apr 2014

    Research areas

  • Fish evolution, Ploidy, Gene loss, Whole-genome duplication

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Influence of feed ration size on somatic and muscle growth in landlocked dwarf and farmed Atlantic salmon Salmo salar

    Andersen, Ø., Vieira, V., Dessen, J-E. & Johnston, I. A., Apr 2019, In : Journal of Fish Biology. 94, 4, p. 614-620 7 p.

    Research output: Contribution to journalArticle

  2. Genomic tools and selective breeding in molluscs

    Hollenbeck, C. M. & Johnston, I. A., 18 Jul 2018, In : Frontiers in Genetics. 9, 15 p., 253.

    Research output: Contribution to journalReview article

  3. A collaborative European approach to accelerating translational marine science

    Brennecke, P., Ferrante, M., Johnston, I. A. & Smith, D., 5 Jul 2018, In : Journal of Marine Science and Engineering. 6, 3, 12 p., 81.

    Research output: Contribution to journalArticle

  4. A workflow used to design low density SNP panels for parentage assignment and traceability in aquaculture species and its validation in Atlantic salmon

    Holman, L. E., Garcia de la Serrana, D., Onoufriou, A., Hillestad, B. & Johnston, I. A., 1 Jul 2017, In : Aquaculture. 476, p. 59-64 6 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Inter and Intraspecific genomic divergence in Drosophila montana shows evidence for cold adaptation

    Parker, D., Wiberg, R. A. W., Trivedi, U., Tyukmaeva, V. I., Gharbi, K., Butlin, R. K., Hoikkala, A., Kankare, M. & Ritchie, M., 1 Aug 2018, In : Genome Biology and Evolution. 10, 8, p. 2086–2101

    Research output: Contribution to journalArticle

  2. Shared transcriptional control and disparate gain and loss of aphid parasitism genes

    Thorpe, P., Escudero-Martinez, C. M., Cock, P. J. A., Eves-van den Akker, S. & Bos, J. I. B., 1 Oct 2018, In : Genome Biology and Evolution. 10, 10, p. 2716-2733

    Research output: Contribution to journalArticle

  3. Assessing recent selection and functionality at long noncoding RNA loci in the mouse genome

    Wiberg, R. A. W., Halligan, D. L., Ness, R. W., Necsulea, A., Kaessmann, H. & Keightley, P. D., Aug 2015, In : Genome Biology and Evolution. 7, 8, p. 2432-2444 13 p.

    Research output: Contribution to journalArticle

  4. The genome and methylome of a beetle with complex social behavior, Nicrophorus vespilloides (Coleoptera: Silphidae)

    Cunningham, C. B., Ji, L., Wiberg, R. A. W., Shelton, J., McKinney, E. C., Parker, D. J., Meagher, R. B., Benowitz, K. M., Roy-Zokan, E. M., Ritchie, M. G., Brown, S. J., Schmitz, R. J. & Moore, A. J., 1 Dec 2015, In : Genome Biology and Evolution. 7, 12, p. 3383-3396 14 p.

    Research output: Contribution to journalArticle

ID: 118748770