Skip to content

Research at St Andrews

Targeted rapid amplification of cDNA ends (T-RACE)-an improved RACE reaction through degradation of non-target sequences

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

Amplification of the 5' ends of cDNA, although simple in theory, can often be difficult to achieve. We describe a novel method for the specific amplification of cDNA ends. An oligo-dT adapter incorporating a dUTP-containing PCR primer primes first-strand cDNA synthesis incorporating dUTP. Using the Cap finder approach, another distinct dUTP containing adapter is added to the 3' end of the newly synthesized cDNA. Second-strand synthesis incorporating dUTP is achieved by PCR, using dUTP-containing primers complimentary to the adapter sequences incorporated in the cDNA ends. The double-stranded cDNA-containing dUTP serves as a universal template for the specific amplification of the 3' or 5' end of any gene. To amplify the ends of cDNA, asymmetric PCR is performed using a single gene-specific primer and standard dNTPs. The asymmetric PCR product is purified and non-target transcripts containing dUTP degraded by Uracil DNA glycosylase, leaving only those transcripts produced during the asymmetric PCR. Subsequent PCR using a nested gene-specific primer and the 3' or 5' T-RACE primer results in specific amplification of cDNA ends. This method can be used to specifically amplify the 3' and 5' ends of numerous cDNAs from a single cDNA synthesis reaction.

Close

Details

Original languageEnglish
Article numbere194
Number of pages7
JournalNucleic Acids Research
Volume38
Issue number21
Early online date15 Sep 2010
DOIs
Publication statusPublished - Nov 2010

    Research areas

  • Uracil DNA Glycosylase, Contamination

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Influence of feed ration size on somatic and muscle growth in landlocked dwarf and farmed Atlantic salmon Salmo salar

    Andersen, Ø., Vieira, V., Dessen, J-E. & Johnston, I. A., Apr 2019, In : Journal of Fish Biology. 94, 4, p. 614-620 7 p.

    Research output: Contribution to journalArticle

  2. Genomic tools and selective breeding in molluscs

    Hollenbeck, C. M. & Johnston, I. A., 18 Jul 2018, In : Frontiers in Genetics. 9, 15 p., 253.

    Research output: Contribution to journalReview article

  3. A collaborative European approach to accelerating translational marine science

    Brennecke, P., Ferrante, M., Johnston, I. A. & Smith, D., 5 Jul 2018, In : Journal of Marine Science and Engineering. 6, 3, 12 p., 81.

    Research output: Contribution to journalArticle

  4. A workflow used to design low density SNP panels for parentage assignment and traceability in aquaculture species and its validation in Atlantic salmon

    Holman, L. E., Garcia de la Serrana, D., Onoufriou, A., Hillestad, B. & Johnston, I. A., 1 Jul 2017, In : Aquaculture. 476, p. 59-64 6 p.

    Research output: Contribution to journalArticle

Related by journal

  1. The ATP-dependent chromatin remodelling enzyme Uls1 prevents Topoisomerase II poisoning

    Swanston, A., Zabrady, K. & Ferreira, H. C., 20 May 2019, In : Nucleic Acids Research. Advance articles , 12 p., gkz362.

    Research output: Contribution to journalArticle

  2. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2+

    McCluskey, K. A., Boudreault, J., St-Pierre, P., Perez Gonzalez, C., Chauvier, A., Rizzi, A., Beauregard, P. B., Lafontaine, D. A. & Penedo-Esteiro, J. C., 2 May 2019, In : Nucleic Acids Research. Advance article, 10 p., gkz316.

    Research output: Contribution to journalArticle

  3. Insights into the evolutionary conserved regulation of Rio ATPase activity

    Knüppel, R., Christensen, R., Gray, F. C., Esser, D., Strauss, D., Medenbach, J., Siebers, B., MacNeill, S. A., LaRonde, N. & Ferreira-Cerca, S., 16 Feb 2018, In : Nucleic Acids Research. 46, 3, p. 1441-1456 16 p.

    Research output: Contribution to journalArticle

  4. Prespacer processing and specific integration in a Type I-A CRISPR system

    Rollie, C., Graham, S., Rouillon, C. & White, M. F., 16 Feb 2018, In : Nucleic Acids Research. 46, 3, p. 1007-1020 14 p.

    Research output: Contribution to journalArticle

  5. Primed CRISPR adaptation in Escherichia coli cells does not depend on conformational changes in the Cascade effector complex detected in vitro

    Krivoy, A., Rutkauskas, M., Kuznedelov, K., Musharova, O., Rouillon, C., Severinov, K. & Seidel, R., 4 May 2018, In : Nucleic Acids Research. 46, 8, p. 4087-4098 12 p.

    Research output: Contribution to journalArticle

ID: 8682252