Skip to content

Research at St Andrews

Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae

Research output: Contribution to journalArticle

DOI

Author(s)

Stefan R Pulver, Stanislav L Pashkovski, Nicholas J Hornstein, Paul A Garrity, Leslie C Griffith

School/Research organisations

Abstract

In recent years, a number of tools have become available for remotely activating neural circuits in Drosophila. Despite widespread and growing use, very little work has been done to characterize exactly how these tools affect activity in identified fly neurons. Using the GAL4-UAS system, we expressed blue light-gated Channelrhodopsin-2 (ChR2) and a mutated form of ChR2 (H134R-ChR2) in motor and sensory neurons of the Drosophila third-instar locomotor circuit. Neurons expressing H134R-ChR2 show enhanced responses to blue light pulses and less spike frequency adaptation than neurons expressing ChR2. Although H134R-ChR2 was more effective at manipulating behavior than ChR2, the behavioral consequences of firing rate adaptation were different in sensory and motor neurons. For comparison, we examined the effects of ectopic expression of the warmth-activated cation channel Drosophila TRPA1 (dTRPA1). When dTRPA1 was expressed in larval motor neurons, heat ramps from 21 to 27 degrees C evoked tonic spiking at approximately 25 degrees C that showed little adaptation over many minutes. dTRPA1 activation had stronger and longer-lasting effects on behavior than ChR2 variants. These results suggest that dTRPA1 may be particularly useful for researchers interested in activating fly neural circuits over long time scales. Overall, this work suggests that understanding the cellular effects of these genetic tools and their temporal dynamics is important for the design and interpretation of behavioral experiments.
Close

Details

Original languageEnglish
Pages (from-to)3075-88
Number of pages14
JournalJournal of Neurophysiology
Volume101
Issue number6
DOIs
Publication statusPublished - Jun 2009

    Research areas

  • Action Potentials, Analysis of Variance, Animals, Animals, Genetically Modified, Arginine, Behavior, Animal, Biophysics, Color, Drosophila, Drosophila Proteins, Electric Stimulation, Female, Green Fluorescent Proteins, Histidine, Larva, Light, Locomotion, Mutation, Neuromuscular Junction, Neurons, Nonlinear Dynamics, Patch-Clamp Techniques, Rhodopsin, TRPC Cation Channels, Temperature, Time Factors

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Narrowband organic light-emitting diodes for fluorescence microscopy and calcium imaging

    Murawski, C., Mischok, A., Booth, J. H., Kumar, J. D., Archer, E., Tropf, L. C., Keum, C., Deng, Y., Yoshida, K., Samuel, I. D. W., Schubert, M., Pulver, S. & Gather, M. C., 5 Sep 2019, In : Advanced Materials. Early View, 8 p.

    Research output: Contribution to journalArticle

  2. Organic light-emitting diodes for optogenetic stimulation of Drosophila larvae

    Murawski, C., Morton, A., Samuel, I. D. W., Pulver, S. & Gather, M. C., 14 Nov 2016, Proceedings, Light, Energy and the Environment. Optical Society of American (OSA), 3 p. JW4A.9. (Fourier Transform Spectroscopy).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  3. Selective inhibition mediates the sequential recruitment of motor pools: Correction

    Zwart, M. F., Pulver, S., Truman, J., Fushiki, A., Cardona, A. & Landgraf, M., 17 Aug 2016, In : Neuron. 91, 4, p. 944

    Research output: Contribution to journalArticle

  4. High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

    Morton, A., Murawski, C., Pulver, S. & Gather, M. C., 3 Aug 2016, In : Scientific Reports. 6, 8 p., 31117.

    Research output: Contribution to journalArticle

  5. Selective inhibition mediates the sequential recruitment of motor pools

    Zwart, M. F., Pulver, S. R., Truman, J. W., Fushiki, A., Fetter, R. D., Cardona, A. & Landgraf, M., 3 Aug 2016, In : Neuron. 91, 3, p. 615-628 14 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Differential regulation of NMDA receptors by D-serine and glycine in mammalian spinal locomotor networks

    Acton, D. & Miles, G. B., 1 May 2017, In : Journal of Neurophysiology. 117, 5, p. 1877-1893

    Research output: Contribution to journalArticle

  2. Gliotransmission and adenosinergic modulation: insights from mammalian spinal motor networks

    Acton, D. & Miles, G. B., Dec 2017, In : Journal of Neurophysiology. 118, 6, p. 3311-3327

    Research output: Contribution to journalReview article

  3. Sodium pump regulation of locomotor control circuits

    Picton, L. D., Zhang, H. & Sillar, K. T., 4 Aug 2017, In : Journal of Neurophysiology. 118, 2, p. 1070-1081

    Research output: Contribution to journalArticle

ID: 167960676

Top