Skip to content

Research at St Andrews

The Dynamic Properties of Hume: a Functionally-Based Concurrent Language with Bounded Time and Space Behaviour

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

This paper provides a self-contained formal description of the dynamic properties of Hume, a novel functionally-based concurrent language that alms to target space- and time-critical systems such as safety-critical, embedded and real-time systems. The language is designed to support rigorous cost and space analyses, whilst providing a high level of abstraction including polymorphic type inference, automatic memory management, higher-order functions, exception-handling and a good range of primitive types.

Close

Details

Original languageEnglish
Title of host publicationLecture Notes in Computer Science 2011
PublisherSpringer-Verlag
Pages122-139
StatePublished - 2001

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Automatically deriving cost models for structured parallel processes using hylomorphisms

    Castro, D., Hammond, K., Sarkar, S. & Alguwaifli, Y. Feb 2018 In : Future Generation Computer Systems. 79, Part 2, p. 653-668

    Research output: Contribution to journalArticle

  2. The Missing Link! A new skeleton for evolutionary multi-agent systems in Erlang

    Stypka, J., Turek, W., Byrski, A., Kisiel-Dorohinicki, M., Barwell, A. D., Brown, C. M., Hammond, K. & Janjic, V. Feb 2018 In : International Journal of Parallel Programming. 46, 1, p. 4-22 19 p.

    Research output: Contribution to journalArticle

  3. Proof-relevant Horn clauses for dependent type inference and term synthesis

    Farka, F., Komendantskya, E. & Hammond, K. 2018 In : Theory and Practice of Logic Programming. 18, 3-4, p. 484-501

    Research output: Contribution to journalArticle

  4. Type-based cost analysis for lazy functional languages

    Jost, S., Vasconcelos, P., Florido, M. & Hammond, K. Jun 2017 In : Journal of Automated Reasoning. 59, 1, p. 87-120 34 p.

    Research output: Contribution to journalArticle

ID: 237061