Skip to content

Research at St Andrews

The effect of Pt NPs crystallinity and distribution on the photocatalytic activity of Pt–g-C3N4

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

School/Research organisations

Abstract

Loading of a co-catalyst on the surface of a semiconductor photocatalyst is often carried out without considering the effect of the loading procedure on the final product. The present study looks in detail at the effect that the loading method has on the morphology and final composition of platinum-based nanoparticles by means of XPS and TEM analysis. Additionally, reduction pre-treatments are performed to investigate how the coverage, crystallinity and composition of the NPs affect the photocatalytic H2 evolution. The activity of Pt–g-C3N4 can significantly be enhanced by controlling the properties of the co-catalyst NPs.

Close

Details

Original languageEnglish
Pages (from-to)13929-13936
JournalPhysical Chemistry Chemical Physics
Volume17
Issue number21
Early online date30 Apr 2015
DOIs
Publication statusPublished - 7 Jun 2015

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Impact of the annealing temperature on Pt/g-C3N4 structure, activity and selectivity between photodegradation and water splitting

    Caux, M., Fina, F., Irvine, J. T. S., Idriss, H. & Howe, R., 1 Jun 2017, In : Catalysis Today. 287, p. 182-188 7 p.

    Research output: Contribution to journalArticle

  2. Assessment of oxidative visible light and UV active photocatalysts by hydroxyl radical quantification

    Nagarajan, S., Skillen, N. C., Fina, F., Zhang, G., Randorn, C., Lawton, L. A., Irvine, J. T. S. & Robertson, P. K. J., 1 Feb 2017, In : Journal of Photochemistry and Photobiology A: Chemistry. 334, p. 13-19 7 p.

    Research output: Contribution to journalArticle

  3. The application of a novel fluidised photo reactor under UV-Visible and natural solar irradiation in the photocatalytic generation of hydrogen

    Skillen, N., Adams, M., McCullagh, C., Ryu, S. Y., Fina, F., Hoffman, M. R., Irvine, J. T. S. & Robertson, P. K. J., 15 Feb 2016, In : Chemical Engineering Journal. 286, p. 610-621 12 p.

    Research output: Contribution to journalArticle

  4. Macro-mesoporous resorcinol-formaldehyde polymer resins as amorphous metal-free visible light photocatalysts

    Zhang, G., Ni, C., Liu, L., Zhao, G., Fina, F. & Irvine, J. T. S., 14 Aug 2015, In : Journal of Materials Chemistry A. 3, 30, p. 15413-15419

    Research output: Contribution to journalArticle

  5. Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light

    Zhao, G., Huang, X., Fina, F., Zhang, G. & Irvine, J. T. S., 1 Jun 2015, In : Catalysis Science & Technology. 5, 6, p. 3416-3422

    Research output: Contribution to journalArticle

Related by journal

  1. Physical Chemistry Chemical Physics (Journal)

    Finlay Morrison (Reviewer)
    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. Palladium–catalysed alkyne alkoxycarbonylation with P,N chelating ligands revisited: a density functional theory study

    Ahmad, S., Lockett, A., Shuttleworth, T., Miles-Hobbs, A., Pringle, P. & Buehl, M., 28 Apr 2019, In : Physical Chemistry Chemical Physics. 21, 16, p. 8543-8552 10 p.

    Research output: Contribution to journalArticle

  2. Photo-catalytic hydrogen production over Au/g-C3N4: effect of gold particle dispersion and morphology

    Caux, M., Menard, H., AlSalik, Y. M., Irvine, J. T. S. & Idriss, H., 7 Aug 2019, In : Physical Chemistry Chemical Physics. 21, 29, p. 15974-15987 14 p.

    Research output: Contribution to journalArticle

  3. Effect of fullerene acceptor on the performance of solar cells based on PffBT4T-2OD

    Zhang, Y., Parnell, A. J., Blaszczyk, O., Musser, A. J., Samuel, I. D. W., Lidzey, D. G. & Bernardo, G., 28 Jul 2018, In : Physical Chemistry Chemical Physics. 20, 28, p. 19023-19029 7 p.

    Research output: Contribution to journalArticle

  4. Giant negative magnetoresistance in Ni(quinoline-8-selenoate)2

    Black, N., Tonouchi, D., Matsushita, M. M., Woollins, J. D., Awaga, K. & Robertson, N., 7 Jan 2018, In : Physical Chemistry Chemical Physics. 20, 1, p. 514-519

    Research output: Contribution to journalArticle

ID: 185552077

Top