Skip to content

Research at St Andrews

The effect of slip length on vortex rebound from a rigid boundary

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

The problem of a dipole incident normally on a rigid boundary, for moderate to large Reynolds numbers, has recently been treated numerically using a volume penalisation method by Nguyen van yen, Farge, and Schneider [Phys. Rev. Lett.106, 184502 (2011)]. Their results indicate that energy dissipating structures persist in the inviscid limit. They found that the use of penalisation methods intrinsically introduces some slip at the boundary wall, where the slip approaches zero as the Reynolds number goes to infinity, so reducing to the no-slip case in this limit. We study the same problem, for both no-slip and partial slip cases, using compact differences on a Chebyshev grid in the direction normal to the wall and Fourier methods in the direction along the wall. We find that for the no-slip case there is no indication of the persistence of energy dissipating structures in the limit as viscosity approaches zero and that this also holds for any fixed slip length. However, when the slip length is taken to vary inversely with Reynolds number then the results of Nguyen van yen et al. are regained. It therefore appears that the prediction that energy dissipating structures persist in the inviscid limit follows from the two limits of wall slip length going to zero, and viscosity going to zero, not being treated independently in their use of the volume penalisation method.
Close

Details

Original languageEnglish
Article number093104
Number of pages22
JournalPhysics of Fluids
Volume25
Issue number9
DOIs
StatePublished - 23 Sep 2013

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G. 28 Jan 2019 In : Journal of Fluid Mechanics. 863, 12 p., R2

    Research output: Contribution to journalArticle

  2. Imperfect bifurcation for the quasi-geostrophic shallow-water equations

    Dritschel, D. G., Hmidi, T. & Renault, C. 12 Oct 2018 In : Archive for Rational Mechanics and Analysis. 231, 3, p. 1853-1915 63 p.

    Research output: Contribution to journalArticle

  3. Circulation conservation and vortex breakup in magnetohydrodynamics at low magnetic Prandtl number

    Dritschel, D. G., Diamond, P. H. & Tobias, S. M. 25 Dec 2018 In : Journal of Fluid Mechanics. 857, p. 38-60

    Research output: Contribution to journalArticle

Related by journal

  1. Physics of Fluids (Journal)

    Dritschel, D. G. (Editor)
    2005 → …

    Activity: Publication peer-review and editorial workEditor of research journal

Related by journal

  1. Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices

    Koshel, K. V., Reinaud, J. N., Riccardi, G. & Ryzhov, E. A. 28 Sep 2018 In : Physics of Fluids. 30, 9, 096603

    Research output: Contribution to journalArticle

  2. Entrapping of a vortex pair interacting with a fixed point vortex revisited. II. Finite size vortices and the effect of deformation

    Reinaud, J. N., Koshel, K. V. & Ryzhov, E. A. 28 Sep 2018 In : Physics of Fluids. 30, 9, 10 p., 096604

    Research output: Contribution to journalArticle

  3. Hetonic quartets in a two-layer quasi-geostrophic flow: V-states and stability

    Reinaud, J. N., Sokolovskiy, M. & Carton, X. 11 May 2018 In : Physics of Fluids. 30, 21 p., 056602

    Research output: Contribution to journalArticle

  4. Geostrophic tripolar vortices in a two-layer fluid: linear stability and nonlinear evolution of equilibria

    Reinaud, J. N., Sokolovskiy, M. & Carton, X. Mar 2017 In : Physics of Fluids. 29, 3, 16 p., 036601

    Research output: Contribution to journalArticle

  5. Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices

    Reinaud, J. N., Dritschel, D. G. & Carton, X. Aug 2017 In : Physics of Fluids. 29, 8, 16 p., 086603

    Research output: Contribution to journalArticle

ID: 143238593