Skip to content

Research at St Andrews

The Effects of Alumina Additions upon the Electrical Properties of 8 mol% Yttria-Stabilised Zirconia

Research output: Contribution to journalArticlepeer-review

Author(s)

School/Research organisations

Abstract

Solid oxide fuel cells (SOFCs) are energy converters that directly transform the chemical energy of combustible gases into electrochemical energy by oxidation. The design of SOFC, which has the highest volumetric power density, is a planar one in which the electrolyte, yttria-stabilised zirconia (YSZ), can be optimised by strengthening with small additions of alpha-Al3O3. Different commercial powders have different impurity contents and thus show different changes in ionic conductivity when alpha-Al2O3 is added. We describe the changes in oxide ion conductivity of Tosoh 8 mol.% YSZ that has been added to with a-alumina. AC impedance measurements show that small additions (similar to 1 wt.%) of Al2O3 can cause the ionic conductivity of Tosoh 8YSZ to increase due to a decrease in the grain boundary impedance which is observable at low to medium temperatures. Small wt.% additions of alpha-Al2O3 also cause an overall decrease in the high temperature impedance of 8YSZ. We have found that 10 wt.% alumina can be added to 8YSZ without any significant decrease in ionic conducting properties. Further additions of alumina cause a rapid decrease in conductivity due to the large volume percent of insulating alumina phases, which are present, and also due to the cracking of pellets that occurs on firing. We also report the improved stability of added-alumina 8YSZ to hydrothermal ageing. Hydrothermal ageing of unadded to 8YSZ, in an autoclave at 180 degrees C, can lead to a decrease in the conductivity at 1000 degrees C by as much as 40%. The drop in conductivity of 8YSZ can be limited to a decrease of only 10% by the addition of greater than 5 wt.% Al2O3. (C) 1999 Elsevier Science B.V. All rights reserved.

Close

Details

Original languageEnglish
Pages (from-to)209-216
Number of pages8
JournalSolid State Ionics
Volume121
Publication statusPublished - Jun 1999

    Research areas

  • alumina addition, yttria-stabilized zirconia, conductivity, hydrothermal ageing, stability, OXIDE FUEL-CELLS, SOLID-ELECTROLYTE, CONDUCTIVITY, PHASE

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  2. Upscaling of co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells: a progress report on a decade of academic-industrial collaboration

    Price, R., Cassidy, M., Grolig, J. G., Longo, G. G., Weissen, U. G., Mai, A. G. & Irvine, J. T. S., 12 Feb 2021, In: Advanced Energy Materials. Early View, 21 p., 2003951.

    Research output: Contribution to journalReview articlepeer-review

  3. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

  4. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light

    Hui, J., Pestana, C. J., Caux, M., Gunaratne, H. Q. N., Edwards, C., Robertson, P. K. J., Lawton, L. A. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Photochemistry and Photobiology A: Chemistry. 405, 112935.

    Research output: Contribution to journalArticlepeer-review

  5. Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies

    Kim, E. J., Mofredj, K., Pickup, D., Chadwick, A., Irvine, J. T. S. & Armstrong, R., 1 Jan 2021, In: Journal of Power Sources. 481, 229010.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  2. Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells

    Price, R., Grolig, J. G., Mai, A. & Irvine, J. T. S., Apr 2020, In: Solid State Ionics. 347, 115254.

    Research output: Contribution to journalArticlepeer-review

  3. Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium

    Coles-Aldridge, A. V. & Baker, R. T., Apr 2020, In: Solid State Ionics. 347, 115255.

    Research output: Contribution to journalArticlepeer-review

  4. Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells

    He, S., Chen, K., Saunders, M., Quadir, Z., Tao, S., Irvine, J. T. S., Cui, C. Q. & Jiang, S. P., 1 Nov 2018, In: Solid State Ionics. 325, p. 176-188 13 p.

    Research output: Contribution to journalArticlepeer-review

  5. Ionic conductivity in multiply substituted ceria-based electrolytes

    Coles-Aldridge, A. V. & Baker, R. T., Mar 2018, In: Solid State Ionics. 316, p. 9-19 11 p.

    Research output: Contribution to journalArticlepeer-review

ID: 118321

Top