Skip to content

Research at St Andrews

The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): a global sediment trap calibration

Research output: Contribution to journalArticle

Author(s)

William R. Gray, Syee Weldeab, David W. Lea, Yair Rosenthal, Nicolas Gruber, Barbara Donner, Gerhard Fischer

School/Research organisations

Abstract

The Mg/Ca of planktic foraminifera Globigerinoides ruber (white) is a widely applied proxy for tropical and sub-tropical sea-surface temperature. The accuracy with which temperature can be reconstructed depends on how accurately relationships between Mg/Ca and temperature and the multiple secondary controls on Mg/Ca are known; however, these relationships remain poorly quantified under oceanic conditions. Here, we present new calibrations based on 440 sediment trap/plankton tow samples from the Atlantic, Pacific and Indian Oceans, including 130 new samples from the Bay of Bengal/Arabian Sea and the tropical Atlantic Ocean. Our results indicate temperature, salinity and the carbonate system all significantly influence Mg/Ca in G. ruber (white). We propose two calibration models: The first model assumes pH is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.0±0.8%/°C (2σ), a salinity sensitivity of 3.3±2.2%/PSU and a pH sensitivity of −8.3±7.7%/0.1 pH units; The second model assumes carbonate ion concentration ([CO32−]) is the controlling carbonate system parameter. In this model, Mg/Ca has a temperature sensitivity of 6.7±0.8%/°C, a salinity sensitivity of 5.0±3.0%/PSU and a [CO32−] sensitivity of −0.24±0.11%/μmol kg−1. In both models, the temperature sensitivity is significantly lower than the widely-applied sensitivity of 9.0±0.6%/°C. Application of our new calibrations to down-core data from the Last Glacial Maximum, considering whole ocean changes in salinity and carbonate chemistry, indicate a cooling of 2.4±1.6°C in the tropical oceans if pH is the controlling parameter and 1.5±1.4°C if [CO32−] is the controlling parameter.

Close

Details

Original languageEnglish
Pages (from-to)607-620
Number of pages14
JournalEarth and Planetary Science Letters
Volume482
Early online date8 Dec 2017
DOIs
Publication statusPublished - 15 Jan 2018

    Research areas

  • Carbonate chemistry, Mg/Ca, Planktic foraminifera, Salinity, SST

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by journal

  1. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”

    Ahms, A-S., Maloof, A., Macdonald, F., Hoffman, P., Bjerrum, C., Bold, U., Rose, C. V., Strauss, J. & Higgins, J., 15 Jan 2019, In : Earth and Planetary Science Letters. 506, p. 292-307 16 p.

    Research output: Contribution to journalArticle

  2. Calibration of Na partitioning in the calcitic foraminifer Operculina ammonoides under variable Ca concentration: toward reconstructing past seawater composition

    Hauzer, H., Evans, D., Müller, W., Rosenthal, Y. & Erez, J., 1 Sep 2018, In : Earth and Planetary Science Letters. 497, p. 80-91 12 p.

    Research output: Contribution to journalArticle

  3. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy

    Sosdian, S. M., Greenop, R., Hain, M. P., Foster, G. L., Pearson, P. N. & Lear, C. H., 15 Sep 2018, In : Earth and Planetary Science Letters. 498, p. 362-376 15 p.

    Research output: Contribution to journalArticle

  4. Cryogenic silicification of microorganisms in hydrothermal fluids

    Fox-Powell, M. G., Channing, A., Applin, D., Cloutis, E., Preston, L. J. & Cousins, C. R., 15 Sep 2018, In : Earth and Planetary Science Letters. 498, p. 1-8 8 p.

    Research output: Contribution to journalArticle

  5. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era

    Kipp, M. A., Stüeken, E. E., Yun, M., Bekker, A. & Buick, R., 15 Oct 2018, In : Earth and Planetary Science Letters. 500, p. 117-126 10 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Earth and Planetary Science Letters (Journal)

    Chris Hawkesworth (Member of editorial board)
    19851993

    Activity: Publication peer-review and editorial work typesEditor of research journal

ID: 251808404