Skip to content

Research at St Andrews

The isotope geochemistry of Ni

Research output: Contribution to journalReview articlepeer-review

Author(s)

Tim Elliott, Robert C. J. Steele

School/Research organisations

Abstract

Nickel is an iron-peak element with 5 stable isotopes (see Table 1) which is both cosmochemically abundant and rich in the information carried in its isotopic signature. Significantly, 60Ni is the radiogenic daughter of 60Fe, a short-lived nuclide (t1/2 = 2.62 Ma; Rugel et al. 2009) of a major element. 60Fe has the potential to be both an important heat source and chronometer in the early solar system. 60Ni abundances serve to document the prior importance 60Fe and this is a topic of on-going debate (see Extinct 60Fe and radiogenic 60Ni). The four other stable Ni nuclides span a sizeable relative mass range of ~10%, including the notably neutron-rich nuclide 64Ni. The relative abundances of these isotopes vary with diverse stellar formation environments and provide a valuable record of the nucleosynthetic heritage of Ni in the solar system (see Nucleosynthetic Ni isotopic variations). Ni occurs widely as both elemental and divalent cationic species, substituting for Fe and Mg in common silicate structures and forming Fe/Ni metal alloys. The Ni isotope chemistry of all the major planetary reservoirs and fractionations between them can thus be characterized (see Mass-Dependent Ni isotopic Variability). Ni is also a bio-essential element and its fractionation during low-temperature biogeochemical cycling is a topic that has attracted recent attention (see Mass-Dependent Ni isotopic Variability).
Close

Details

Original languageEnglish
Pages (from-to)511-542
Number of pages31
JournalReviews in Mineralogy and Geochemistry
Volume82
Issue number1
DOIs
Publication statusPublished - 1 Jan 2017

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Elemental abundances of major elements in the solar wind as measured in Genesis targets and implications on solar wind fractionation

    Heber, V., McKeegan, K., Steele, R. C. J., Jurewicz, A., Rieck, K., Guan, Y., Wieler, R. & Burnett, D. S., 20 Jan 2021, In: Astrophysical Journal. 907, 1, 15.

    Research output: Contribution to journalArticlepeer-review

  2. Nucleosynthetic heterogeneities in meteorites

    Steele, R. C. J., 17 Sep 2020, Reference Module in Earth Systems and Environmental Sciences. Elsevier Inc.

    Research output: Chapter in Book/Report/Conference proceedingChapter

  3. The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field

    Bischoff, A., Barrat, J-A., Bauer, K., Burkhardt, C., Busemann, H., Ebert, S., Gonsior, M., Hakenmüller, J., Haloda, J., Harries, D., Heinlein, D., Hiesinger, H., Hochleitner, R., Hoffmann, V., Kaliwoda, M., Laubenstein, M., Maden, C., Meier, M. M. M., Morlok, A., Pack, A. & 6 others, Ruf, A., Schmitt-Kopplin, P., Schönbächler, M., Steele, R. C. J., Spurný, P. & Wimmer, K., 2 Aug 2017, In: Meteoritics & Planetary Science. 52, 8, p. 1683-1703

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Selenium isotopes as a biogeochemical proxy in deep time

    Stueeken, E. E., 1 Jan 2017, In: Reviews in Mineralogy and Geochemistry. 82, 1, p. 657-682

    Research output: Contribution to journalArticlepeer-review

  2. The isotope geochemistry of zinc and copper

    Moynier, F., Vance, D., Fujii, T. & Savage, P., 31 Jan 2017, In: Reviews in Mineralogy and Geochemistry. 82, 1, p. 543-600 58 p.

    Research output: Contribution to journalArticlepeer-review

ID: 255735846

Top