Skip to content

Research at St Andrews

The moist parcel-in-cell method for modelling moist convection

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

D. G. Dritschel, S. J. Böing, D. J. Parker, A. M. Blyth

School/Research organisations

Abstract

We describe a promising alternative approach to modelling moist convection and cloud development in the atmosphere. Rather than using a conventional grid‐based approach, we use Lagrangian “parcels” to represent key dynamical and thermodynamical variables. In the prototype model considered, parcels carry vorticity, mass, specific humidity, and liquid‐water potential temperature. In this first study, we ignore precipitation, and many of these parcel “attributes” remain unchanged (i.e. are materially conserved). While the vorticity does change following the parcel motion, the vorticity tendency is readily computed and, crucially, unwanted numerical diffusion can be avoided. The model, called “Moist Parcel‐In‐Cell” (MPIC), is a hybrid approach which uses both parcels and a fixed underlying grid for efficiency: advection (here moving parcels) is Lagrangian whereas inversion (determining the velocity field) is Eulerian. The parcel‐based representation of key variables has several advantages: (a) it allows an explicit subgrid representation; (b) it provides a velocity field which is undamped by numerical diffusion all the way down to the grid scale; (c) it does away with the need for eddy viscosity parametrizations and, in their place, it provides for a natural subgrid parcel mixing; (d) it is exactly conservative (i.e. there can be no net loss or gain of any theoretically conserved attribute); and (e) it dispenses with the need to have separate equations for each conserved parcel attribute; attributes are simply labels carried by each parcel. Moreover, the latter advantage increases as more attributes are added, such as the distributions of microphysical properties, chemical composition and aerosol loading.    
Close

Details

Original languageEnglish
Pages (from-to)1695-1718
JournalQuarterly Journal of the Royal Meteorological Society
Volume144
Issue number715
Early online date4 Oct 2018
DOIs
Publication statusE-pub ahead of print - 4 Oct 2018

    Research areas

  • Clouds, Convection, Numerical method

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer

    Dritschel, D. G. & Jalali, M. R., 19 Feb 2019, In : Journal of Fluid Mechanics. 865, p. 100-136

    Research output: Contribution to journalArticle

  2. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, 12 p., R2.

    Research output: Contribution to journalArticle

  3. The stability and nonlinear evolution of quasi-geostrophic toroidal vortices

    Reinaud, J. N. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 60-78

    Research output: Contribution to journalArticle

  4. Comparison of the Moist Parcel-in-Cell (MPIC) model with Large-Eddy Simulation for an idealised cloud

    Böing, S. J., Dritschel, D. G., Parker, D. J. & Blyth, A. M., 12 Mar 2019, (Accepted/In press) In : Quarterly Journal of the Royal Meteorological Society. In press

    Research output: Contribution to journalArticle

Related by journal

  1. Comparison of the Moist Parcel-in-Cell (MPIC) model with Large-Eddy Simulation for an idealised cloud

    Böing, S. J., Dritschel, D. G., Parker, D. J. & Blyth, A. M., 12 Mar 2019, (Accepted/In press) In : Quarterly Journal of the Royal Meteorological Society. In press

    Research output: Contribution to journalArticle

  2. Nonlinear latitudinal transfer of wave activity in the winter stratosphere

    Scott, R. K., 11 Feb 2019, (Accepted/In press) In : Quarterly Journal of the Royal Meteorological Society. In press

    Research output: Contribution to journalArticle

  3. A new class of vacillations of the stratospheric polar vortex

    Scott, R. K., Jul 2016, In : Quarterly Journal of the Royal Meteorological Society. 142, 698, p. 1948-1957 10 p.

    Research output: Contribution to journalArticle

  4. A test case for the inviscid shallow-water equations on the sphere

    Scott, R. K., Harris, L. M. & Polvani, L. M., Jan 2016, In : Quarterly Journal of the Royal Meteorological Society. 142, 694, p. 488-495 8 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Quarterly Journal of the Royal Meteorological Society (Journal)

    Richard Kirkness Scott (Editor)
    2011 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

  2. Quarterly Journal of the Royal Meteorological Society (Journal)

    David Gerard Dritschel (Editor)
    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

ID: 252962614