Skip to content

Research at St Andrews

The molybdenum isotopic compositions of I-, S- and A- type granitic suites

Research output: Contribution to journalArticlepeer-review

Author(s)

Jie Yang, Jane Barling, Christopher Siebert, Jan Fietzke, Ed Stephens, Alex N. Halliday

School/Research organisations

Abstract

This study reports Mo isotopic compositions for fifty-two Palaeozoic granitic rocks with contrasting source affinities (A-, I- and S-type) from the Lachlan Fold Belt (LFB) and the New England Batholith (NEB), both in SE Australia, and three compositionally zoned plutons (Loch Doon, Criffell, and Fleet) located in the South Uplands of Scotland. The results show relatively large variations in δ98Mo for igneous rocks ranging from -1.73‰ to 0.59‰ with significant overlaps between different types. No relationships between δ98Mo and δ18O or ASI (Alumina Saturation Index) are observed, indicating that Mo isotopes do not clearly distinguish igneous versus sedimentary source types. Instead, effects of igneous processes, source mixing, regional geology, as well as hydrothermal activity control the Mo isotope compositions in these granites. It is found that Mo is mainly accommodated in biotite and to a lesser extent in hornblende. Hornblende and Fe3+-rich minerals may preferentially incorporate light isotopes, as reflected by negative correlations between δ98Mo and K/Rb and [Fe2O3]. There is a positive correlation between initial 87Sr/86Sr and δ98Mo in I-type granitic rocks, reflecting the admixing of material from isotopically distinct sources. Granitic rocks from Scotland and Australia display strikingly similar curvilinear trends in δ98Mo vs. initial 87Sr/86Sr despite the differing regional geology. Localized hydrothermal effects on Mo isotopes in three samples from Loch Doon and Criffell can result in anomalously low δ98Mo of < -1‰. Based on this study, an estimate of δ98Mo = 0.14±0.07‰ (95% s.e.) for the Phanerozoic upper crust is proposed. This is slightly heavier than basalts indicating an isotopically light lower crust and / or a systematic change to the crust resulting from subduction of isotopically light dehydrated slab and / or pelagic sediment over time.
Close

Details

Original languageEnglish
Pages (from-to)168-186
Number of pages19
JournalGeochimica et Cosmochimica Acta
Volume205
Early online date30 Jan 2017
DOIs
Publication statusPublished - 15 May 2017

    Research areas

  • Molybdenum isotopes, Granitic rock, Granite, A-type, I-type, S-type, Lachlan Fold Belt, Loch Doon, Criffell, Fleet, the upper crust

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Reducing toxic reactive carbonyl species in e-cigarette emissions: testing a harm-reduction strategy based on dicarbonyl trapping

    de Falco, B., Petridis, A., Paramasivan, P., Troise, A. D., Scaloni, A., Deeni, Y., Stephens, W. E. & Fiore, A., 5 Jun 2020, In: RSC Advances. 10, 36, p. 21535-21544 10 p.

    Research output: Contribution to journalArticlepeer-review

  2. A method for comparing the impact on carcinogenicity of tobacco products: a case study on heated tobacco versus cigarettes

    Slob, W., Soeteman-Hernández, L. G., Wieneke, B., Staal, Y. C. M., Stephens, W. E. & Talhout, R., 1 May 2020, In: Risk Analysis. Early View, 12 p.

    Research output: Contribution to journalArticlepeer-review

  3. A strategy for efficiently collecting aerosol condensate using silica fibers: application to carbonyl emissions from e-cigarettes

    Stephens, W. E., de Falco, B. & Fiore, A., 21 Oct 2019, In: Chemical Research in Toxicology. 32, 10, p. 2053-2062

    Research output: Contribution to journalArticlepeer-review

  4. Comparing the cancer potencies of emissions from vapourised nicotine products including e-cigarettes with those of tobacco smoke

    Stephens, W. E., 18 Dec 2017, In: Tobacco Control. 21, 1, p. 10-17 8 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Experiments quantifying elemental and isotopic fractionations during evaporation of CAI-like melts in low-pressure hydrogen and in vacuum: Constraints on thermal processing of CAI in the protoplanetary disk

    Mendybaev, R. A., Kamibayashi, M., Teng, F-Z., Savage, P. S., Bastian Georg, R., Richter, F. M. & Tachibana, S., 1 Jan 2021, In: Geochimica et Cosmochimica Acta. 292, p. 557-576

    Research output: Contribution to journalArticlepeer-review

  2. Sulfate sulfur isotopes and major ion chemistry reveal that pyrite oxidation counteracts CO2 drawdown from silicate weathering in the Langtang-Trisuli-Narayani River system, Nepal Himalaya

    Kemeny, P. C., Lopez, G. I., Dalleska, N. F., Torres, M., Burke, A., Bhatt, M. P., West, A. J., Hartmann, J. & Adkins, J. F., 1 Feb 2021, In: Geochimica et Cosmochimica Acta. 294, p. 43-69

    Research output: Contribution to journalArticlepeer-review

  3. Incorporation of minor and trace elements into cultured brachiopods: implications for proxy application with new insights from a biomineralisation model

    Jurikova, H., Ippach, M., Liebetrau, V., Gutjahr, M., Krause, S., Büsse, S., Gorb, S. N., Henkel, D., Hiebenthal, C., Schmidt, M., Leipe, T., Laudien, J. & Eisenhauer, A., 1 Oct 2020, In: Geochimica et Cosmochimica Acta. 286, p. 418-440 23 p.

    Research output: Contribution to journalArticlepeer-review

  4. The sulfur isotope evolution of magmatic-hydrothermal fluids: insights into ore-forming processes

    Hutchison, W., Finch, A. A. & Boyce, A. J., 1 Nov 2020, In: Geochimica et Cosmochimica Acta. 288, p. 176-198

    Research output: Contribution to journalArticlepeer-review

  5. Trace and major element incorporation into amorphous calcium carbonate (ACC) precipitated from seawater

    Evans, D., Gray, W. R., Rae, J. W. B., Greenop, R., Webb, P. B., Penkman, K., Kroger, R. & Allison, N., 9 Sep 2020, In: Geochimica et Cosmochimica Acta. In press

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Geochimica et Cosmochimica Acta (Journal)

    Anouk Margaretha Borst (Reviewer)

    15 Jul 2020

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

ID: 249036438

Top