Skip to content

Research at St Andrews

The oxime portmanteau motif: released heteroradicals undergo incisive EPR interrogation and deliver diverse heterocycles

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

School/Research organisations

Abstract

Selective syntheses are now available for compounds of many classes, based on C-centered radicals, exploiting a diverse range of mechanisms. The prospect for chemistry based around N- and O-centered radicals is probably more favorable because of the importance of heterocycles as biologically active materials. Heteroradical chemistry is still comparatively underdeveloped due to the need for safe and easy ways of generating them. Oxime esters appeared promising candidates to meet this need because literature reports and our EPR spectroscopic examinations showed they readily dissociated on photolysis with production of a pair of N- and O-centered radicals. It soon became apparent that a whole suite of benign oxime-containing molecules could be pressed into service. The bimodality of the oxime motif meant that by suitable choice of functionality the reactions could be directed to yield selectively products from either the N-centered radicals or from the O-centered radicals.

We found that on one hand photolyses of acetophenone oxime esters of carboxylic acids yielded alicyclics. On the other hand, aromatic and heteroaromatic acyl oximes (as well as dioxime oxalates) afforded good yields of phenanthridines and related heterocycles. Easily prepared oxime oxalate amides released carbamoyl radicals, and pleasingly, β-lactams were thereby obtained. Oxime carbonates and oxime carbamates, available via our novel 1,1'-carbonyldiimidazole (CDI)-based preparations, were accessible alternatives for iminyl radicals and hence for phenanthridine preparations. In their second modes, these compounds proved their value as precursors for exotic alkoxycarbonyloxyl and carbamoyloxyl radicals.

Microwave-assistance was shown to be a particularly convenient procedure with O-phenyl oxime ethers. The iminyl radicals generated from such precursors with alkene, alkyne, and aromatic acceptor substituents furnished pyrrole, quinoline, phenanthridine, benzonaphthiridine, indolopyridine, and other systems. Microwave irradiations with 2-(aminoaryl)alkanone O-phenyl oximes enabled either dihydroquinazolines or quinazolines to be obtained in very good yields.

The fine quality of the EPR spectra, acquired during photolyses of all the O-carbonyl oxime types, marked this as an important complement to existing ways of obtaining such spectra in solution. Quantifications enabled SARs to be obtained for key reaction types of N- and O-centered radicals, thus putting mechanistic chemistry in this area on a much firmer footing. Surprises included the inverse gem-dimethyl effect in 5-exo-cyclizations of iminyls and the interplay of spiro- with ortho-cyclization onto aromatics. Insights into unusual 4-exo-cyclizations of carbamoyl radicals showed the process to be more viable than pent-4-enyl 4-exo-ring closure. Another surprise was the magnitude of the difference in CO2 loss rate from alkoxycarbonyloxyl radicals as compared with acyloxyl radicals. Their rapid 5-exo-cyclization was charted, as was their preferred spiro-cyclization onto aromatics. The first evidence that N-monosubstituted carbamoyloxyls had finite lifetimes was also forthcoming.

It is evident that oxime derivatives have excellent credentials as reagents for radical generation and that there is ample room to extend their applications to additional radical types and for further heterocycle syntheses. There is also clear scope for the development of preparative procedures based around the alkoxyl and aminyl radicals that emerge downstream from oxime carbonate and oxime carbamate dissociations.
Close

Details

Original languageEnglish
Pages (from-to)1406-1416
JournalAccounts of Chemical Research
Volume47
Issue number4
Early online date21 Mar 2014
DOIs
StatePublished - Mar 2014

    Research areas

  • Physical organic chemistry, Heteroradicals , EPR Interrogation , Heterocycles

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. N- to C-sulfonyl photoisomerisation of dihydropyridinones: a synthetic and mechanistic study

    Yeh, P-P., Taylor, J. E., Stark, D. G., Daniels, D. S. B., Fallan, C., Walton, J. C. & Smith, A. D. 16 Oct 2017 In : Organic & Biomolecular Chemistry. In press

    Research output: Contribution to journalArticle

  2. A valuable upgrade to the portfolio of cycloaddition reactions

    Walton, J. C. 9 Jun 2016 In : Angewandte Chemie International Edition. 55, 25, p. 7034-7036 3 p.

    Research output: Contribution to journalArticle

  3. Synthetic strategies for 5- and 6-membered ring azaheterocycles facilitated by iminyl radicals

    Walton, J. C. 18 May 2016 In : Molecules. 21, 5

    Research output: Contribution to journalReview article

  4. Identification of products from canthaxanthin oxidation

    Mordi, R. C. & Walton, J. C. 15 Apr 2016 In : Food Chemistry. 197, Part A, p. 836-840 5 p.

    Research output: Contribution to journalArticle

  5. Functionalised oximes: emergent precursors for carbon-, nitrogen- and oxygen-centred radicals

    Walton, J. C. 7 Jan 2016 In : Molecules. 21, 1, 23 p., 63

    Research output: Contribution to journalReview article

Related by journal

  1. From a Decomposition Product to an Efficient and Versatile Catalyst: The [Ru(η5-indenyl)(PPh3)2Cl] Story

    Manzini, S., Fernandez Salas, J. A. & Nolan, S. P. 2014 In : Accounts of Chemical Research. 47, p. 3089-3101 13 p.

    Research output: Contribution to journalArticle

  2. Aromatic stacking interactions in flavin model systems

    Nandwana, V., Samuel, I. D. W., Cooke, G. & Rotello, V. M. 16 Apr 2013 In : Accounts of Chemical Research. 46, 4, p. 1000-1009 10 p.

    Research output: Contribution to journalReview article

  3. N-Heterocyclic Carbene Gold(I) and Copper(I) Complexes in C-H Bond Activation

    Gaillard, S., Cazin, C. S. J. & Nolan, S. P. Jun 2012 In : Accounts of Chemical Research. 45, 6, p. 778-787 10 p.

    Research output: Contribution to journalReview article

ID: 106258747