Skip to content

Research at St Andrews

The quasi-geostrophic ellipsoidal vortex model

Research output: Contribution to journalArticle

Author(s)

School/Research organisations

Abstract

We present a simple approximate model for studying general aspects of vortex interactions in a rotating stably-stratified fluid. The model idealizes vortices by ellipsoidal volumes of uniform potential vorticity, a materially conserved quantity in an inviscid, adiabatic fluid. Each vortex thus possesses 9 degrees of freedom, 3 for the centroid and 6 for the shape and orientation. Here, we develop equations for the time evolution of these quantities for a general system of interacting vortices. An isolated ellipsoidal vortex is well known to remain ellipsoidal in a fluid with constant background rotation and uniform stratification, as considered here. However, the interaction between any two ellipsoids in general induces weak non-ellipsoidal perturbations. We develop a unique projection method, which follows directly from the Hamiltonian structure of the system, that effectively retains just the part of the interaction which preserves ellipsoidal shapes. This method does not use a moment expansion, e.g. local expansions of the flow in a Taylor series. It is in fact more general, and consequently more accurate. Comparisons of the new model with the full equations of motion prove remarkably close.

Close

Details

Original languageEnglish
Pages (from-to)201-223
Number of pages23
JournalJournal of Fluid Mechanics
Volume505
DOIs
Publication statusPublished - 25 Apr 2004

    Research areas

  • Stratified fluid, Elliptic model, Vortices, Shear, Equations, Flows, Dynamics, Merger, Motion

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. The stability and nonlinear evolution of quasi-geostrophic toroidal vortices

    Reinaud, J. N. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 60-78

    Research output: Contribution to journalArticle

  2. The merger of geophysical vortices at finite Rossby and Froude number

    Reinaud, J. N. & Dritschel, D. G., 10 Aug 2018, In : Journal of Fluid Mechanics. 848, p. 388-410

    Research output: Contribution to journalArticle

  3. Interaction between a quasi-geostrophic buoyancy filament and a heton

    Reinaud, J. N., Carton, X. & Dritschel, D. G., Sep 2017, In : Fluids. 2, 3, 20 p., 37.

    Research output: Contribution to journalArticle

  4. Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices

    Reinaud, J. N., Dritschel, D. G. & Carton, X., Aug 2017, In : Physics of Fluids. 29, 8, 16 p., 086603.

    Research output: Contribution to journalArticle

Related by journal

  1. Journal of Fluid Mechanics (Journal)

    David Gerard Dritschel (Editor)
    2005 → …

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer

    Dritschel, D. G. & Jalali, M. R., 25 Apr 2019, In : Journal of Fluid Mechanics. 865, p. 100-136

    Research output: Contribution to journalArticle

  2. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, 12 p., R2.

    Research output: Contribution to journalArticle

  3. The stability and nonlinear evolution of quasi-geostrophic toroidal vortices

    Reinaud, J. N. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 60-78

    Research output: Contribution to journalArticle

  4. Three-dimensional quasi-geostrophic vortex equilibria with m−fold symmetry

    Reinaud, J. N., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, p. 32-59

    Research output: Contribution to journalArticle

ID: 253331