Skip to content

Research at St Andrews

The relationship between mantle pH and the deep nitrogen cycle

Research output: Contribution to journalArticle

Abstract

Nitrogen is distributed throughout all terrestrial geological reservoirs (i.e., the crust, mantle, and core), which are in a constant state of disequilibrium due to metabolic factors at Earth’s surface, chemical weathering, diffusion, and deep N fluxes imposed by plate tectonics. However, the behavior of nitrogen during subduction is the subject of ongoing debate. There is a general consensus that during the crystallization of minerals from melts, monatomic nitrogen behaves like argon (highly incompatible) and ammonium behaves like potassium and rubidium (which are relatively less incompatible). Therefore, the behavior of nitrogen is fundamentally underpinned by its chemical speciation. In aqueous fluids, the controlling factor which determines if nitrogen is molecular (N2) or ammonic (inclusive of both NH4+ and NH30) is oxygen fugacity, whereas pH designates if ammonic nitrogen is NH4+ and NH30. Therefore, to address the speciation of nitrogen at high pressures and temperatures, one must also consider pH at the respective pressure–temperature conditions. To accomplish this goal we have used the Deep Earth Water Model (DEW) to calculate the activities of aqueous nitrogen from 1-5 GPa and 600-1000 °C in equilibrium with a model eclogite-facies mineral assemblage of jadeite + kyanite + quartz/coesite (metasediment), jadeite + pyrope + talc + quartz/coesite (metamorphosed mafic rocks), and carbonaceous eclogite (metamorphosed mafic rocks + elemental carbon). We then compare these data with previously published data for the speciation of aqueous nitrogen across these respective P-T conditions in equilibrium with a model peridotite mineral assemblage (Mikhail, S. Sverjensky, D.A. 2014. Nature. Geoscience 7, 816–819). In addition, we have carried out full aqueous speciation and solubility calculations for the more complex fluids in equilibrium with jadeite + pyrope + kyanite + diamond, and for fluids in equilibrium with forsterite + enstatite + pyrope + diamond.

Our results show that the pH of the fluid is controlled by mineralogy for a given pressure and temperature, and that pH can vary by several units in the pressure-temperature range of 1-5 GPa and 600-1000 °C. Our data show that increasing temperature stabilizes molecular nitrogen and increasing pressure stabilizes ammonic nitrogen. Our model also predicts a stark difference for the dominance of ammonic vs. molecular and ammonium vs. ammonia for aqueous nitrogen in equilibrium with eclogite-facies and peridotite mineralogies, and as a function of the total dissolved nitrogen in the aqueous fluid where lower N concentrations favor aqueous ammonic nitrogen stabilization and higher N concentrations favor aqueous N2.

Overall, we present thermodynamic evidence for nitrogen to be reconsidered as an extremely dynamic (chameleon) element whose speciation and therefore behavior is determined by a combination of temperature, pressure, oxygen fugacity, chemical activity, and pH. We show that altering the mineralogy in equilibrium with the fluid can lead to a pH shift of up to 4 units at 5 GPa and 1000 °C. Therefore, we conclude that pH imparts a strong control on nitrogen speciation, and thus N flux, and should be considered a significant factor in high temperature geochemical modeling in the future. Finally, our modelling demonstrates that pH plays an important role in controlling speciation, and thus mass transport, of Eh-pH sensitive elements at temperatures up to at least 1000 °C.
Close

Details

Original languageEnglish
Pages (from-to)149-160
Number of pages12
JournalGeochimica et Cosmochimica Acta
Volume209
Early online date18 Apr 2017
DOIs
StatePublished - 15 Jul 2017

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Plume-lithosphere interaction, and the formation of fibrous diamonds

    Broadley, M. B., Kagi, H., Burgess, R., Zedgenizov, D., Mikhail, S., Almayrac, M., Ragozin, A., Pomazansky, B. & Sumino, H. 1 Oct 2018 In : Geochemical Perspectives Letters. 8, p. 26-30 5 p.

    Research output: Contribution to journalArticle

  2. The geobiological nitrogen cycle: from microbes to the mantle

    Zerkle, A. L. & Mikhail, S. May 2017 In : Geobiology. 15, 13, p. 343-352 10 p.

    Research output: Contribution to journalArticle

  3. Low surface gravitational acceleration of Mars results in a thick and weak lithosphere: implications for topography, volcanism, and hydrology

    Heap, M. J., Byrne, P. K. & Mikhail, S. 1 Jan 2017 In : Icarus. 281, p. 103-114 12 p.

    Research output: Contribution to journalArticle

  4. Diamonds from Dachine, French Guiana: a unique record of Early Proterozoic subduction

    Smith, C. B., Walter, M. J., Bulanova, G. P., Mikhail, S., Burnham, A. D., Gobbo, L. & Kohn, S. C. 15 Nov 2016 In : Lithos. 265, p. 82-95 14 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Assessing foraminifera biomineralisation models through trace element data of cultures under variable seawater chemistry

    Evans, D., Müller, W. & Erez, J. 8 Mar 2018 In : Geochimica et Cosmochimica Acta. In press

    Research output: Contribution to journalArticle

  2. Coupled Mg/Ca and clumped isotope analyses of foraminifera provide consistent water temperatures

    Breitenbach, S. F. M., Mleneck-Vautravers, M. J., Grauel, A. L., Lo, L., Bernasconi, S. M., Müller, I. A., Rolfe, J., Gázquez, F., Greaves, M. & Hodell, D. A. 1 Sep 2018 In : Geochimica et Cosmochimica Acta. 236, p. 283-296 14 p.

    Research output: Contribution to journalArticle

  3. Prediction of equilibrium isotopic fractionation of the gypsum/bassanite/water system using first-principles calculations

    Liu, T., Artacho, E., Gázquez, F., Walters, G. & Hodell, D. 5 Sep 2018 In : Geochimica et Cosmochimica Acta. In press

    Research output: Contribution to journalArticle

  4. Records of carbon and sulfur cycling during the Silurian Ireviken Event in Gotland, Sweden

    Rose, C., Fischer, W. W., Finnegan, S. & Fike, D. A. 26 Nov 2018 In : Geochimica et Cosmochimica Acta. In press

    Research output: Contribution to journalArticle

  5. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks

    Stueeken, E. E., Zaloumis, J., Meixnerová, J. & Buick, R. 15 Nov 2017 In : Geochimica et Cosmochimica Acta. 217, p. 80-94

    Research output: Contribution to journalArticle

ID: 249597494