Skip to content

Research at St Andrews

The source of sulfate in brachiopod calcite: insights from μ-XRF imaging and XANES spectroscopy

Research output: Contribution to journalArticle

Author(s)

Jocelyn A. Richardson, Matthew Newville, Antonio Lanzirotti, Samuel M. Webb, Catherine V. Rose, Jeffrey G. Catalano, David A. Fike

School/Research organisations

Abstract

Geochemical signatures preserved in sedimentary carbonate strata are often used as archives for paleoenvironmental reconstructions. However, diagenetic overprinting and/or muting of primary geochemical signatures complicates the interpretation of these data. To avoid this issue, geochemical techniques strive to target unaltered (or minimally altered) carbonate components. The multi-layer low-Mg calcite shell composition of articulate brachiopods are often the target in such studies because they are commonly more robust to recrystallization than the shells of other biomineralizers. Here, we have combined S K-edge μ-XRF imaging, XANES spectroscopy and petrography to determine the source of sulfate in the calcite lattice (carbonate-associated sulfate; CAS) of ancient and extant brachiopods, in order to establish their suitability for use in reconstructing seawater sulfate δ34S throughout the Phanerozoic. Both the extant brachiopod Terebratalia transversa and fossil brachiopods display intra-specimen variability in sulfate abundance parallel to the primary fabric, likely corresponding to variations in growth rate. XANES spectroscopy identifies a majority of the sulfate as inorganic. Additionally, XANES spectroscopy detected low abundances of both reduced and oxidized organic sulfur species (thiol, thioether, sulfoxide and sulfate esters) in all T. transversa samples and lesser abundances in a few of the fossil brachiopods. In T. transversa, inorganic sulfate and sulfate ester abundance increase towards the hinge of the valves. Bulk δ34SCAS of the samples containing the fossil brachiopods are consistently more positive than time-equivalent brachiopod-only values, likely reflecting a mixture of CAS signals from homogenization of carbonate components differentially affected by depositional environment and diagenesis. In contrast, bulk δ34SCAS of modern T. transversa is approximately 1‰ more positive than coeval seawater. Although organic sulfate esters are found within the brachiopod shells, they are only ever present as trace components. Our findings indicate that the vast majority of sulfate in brachiopod shells is inorganic, sourced from coeval seawater. This result supports the use of brachiopods as a potential archive for a faithful CAS record of seawater sulfate throughout the Phanerozoic. The characterization of in situ organic sulfur compounds in both extant and fossil brachiopods indicates the potential importance of various organic sulfur compounds in mineralogical determination (and therefore fossil preservation) and crystal orientation during brachiopod biomineralization throughout geologic time.
Close

Details

Original languageEnglish
JournalChemical Geology
VolumeIn press
Early online date14 Oct 2019
DOIs
Publication statusE-pub ahead of print - 14 Oct 2019

    Research areas

  • Carbonate-associated sulfate, CAS, XANES spectroscopy, μ-XRF imaging, Sulfur speciation, Brachiopod

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Depositional and diagenetic constraints on the abundance and spatial variability of carbonate-associated sulfate

    Richardson, J. A., Newville, M., Lanzirotti, A., Webb, S. M., Rose, C. V., Catalano, J. G. & Fike, D. A., 30 Sep 2019, In : Chemical Geology. 523, p. 59-72

    Research output: Contribution to journalArticle

  2. Insights into past ocean proxies from micron-scale mapping of sulfur species in carbonates

    Rose, C. V., Webb, S. M., Newville, M., Lanzirotti, A., Richardson, J. A., Tosca, N. J., Catalano, J. G., Bradley, A. S. & Fike, D. A., 1 Sep 2019, In : Geology. 47, 9, p. 833-837 833.

    Research output: Contribution to journalArticle

  3. Records of carbon and sulfur cycling during the Silurian Ireviken Event in Gotland, Sweden

    Rose, C., Fischer, W. W., Finnegan, S. & Fike, D. A., 1 Feb 2019, In : Geochimica et Cosmochimica Acta. 246, p. 299-316 18 p.

    Research output: Contribution to journalArticle

  4. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”

    Ahms, A-S., Maloof, A., Macdonald, F., Hoffman, P., Bjerrum, C., Bold, U., Rose, C. V., Strauss, J. & Higgins, J., 15 Jan 2019, In : Earth and Planetary Science Letters. 506, p. 292-307 16 p.

    Research output: Contribution to journalArticle

  5. Project report: grinding through the Ediacaran-Cambrian transition

    Rose, C. V., Prave, T., Bergmann, K. D., Condon, D. J., Kasemann, S. A., Macdonald, F. A., Hoffmann, K. -H., Trindade, R. I. F. & Zhu, M., 2019, In : Communications of the Geological Survey of Namibia. 21, p. 1-14 1.

    Research output: Contribution to journalArticle

Related by journal

  1. Highlights of the Goldschmidt Meeting, Heidelberg, 31 March–4 April 1996 in honor of A.W. Hofmann

    Hawkesworth, C. (ed.) & Arndt, N. (ed.), 1997, Chemical Geology, 139 360 p.

    Research output: Contribution to specialist publicationSpecial issue

Related by journal

  1. Depositional and diagenetic constraints on the abundance and spatial variability of carbonate-associated sulfate

    Richardson, J. A., Newville, M., Lanzirotti, A., Webb, S. M., Rose, C. V., Catalano, J. G. & Fike, D. A., 30 Sep 2019, In : Chemical Geology. 523, p. 59-72

    Research output: Contribution to journalArticle

  2. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia — Implications for the preservation of primary C isotope signals

    Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A. R., Sepp, H., Romashkin, A. E., Rychanchik, D. V. & Kirsimäe, K., 5 May 2019, In : Chemical Geology. 512, p. 43-57 15 p.

    Research output: Contribution to journalArticle

  3. Potassium isotope fractionation during magmatic differentiation of basalt to rhyolite

    Tuller-Ross, B., Savage, P. S., Chen, H. & Wang, K., 11 Jul 2019, In : Chemical Geology. In press

    Research output: Contribution to journalArticle

  4. Bias in carbon concentration and δ13C measurements of organic matter due to cleaning treatments with organic solvents

    Muller, É., Thomazo, C., Stüeken, E. E., Hallmann, C., Leider, A., Chaduteau, C., Buick, R., Baton, F., Philippot, P. & Ader, M., 20 Aug 2018, In : Chemical Geology. 493, p. 405-412 8 p.

    Research output: Contribution to journalArticle

ID: 262150568

Top