Skip to content

Research at St Andrews

Thermochemical and Structural Stability of A- and B-Site-Substituted Perovskites in Hydrogen-Containing Atmosphere

Research output: Contribution to journalArticle

DOI

Author(s)

Elena Konysheva, John Thomas Sirr Irvine

School/Research organisations

Abstract

The thermochemical and structural stability of complex perovskites A(1-x)A'(x)B(1-y-z)B'(y)B $(z)O(3 +/-delta) (A, A' = La, Sr and B, B' B $ = Ni, Mn, Fe, Co) was explored in H(2)-Ar atmosphere (5% H(2)-95% Ar) in a wide temperature range by thermogravimetric analysis, differential thermal analysis, XRD, and HRTEM. All perovskites showed good thermochemical stability in a temperature range of 25-300 degrees C. Reduction of the perovskites occurs at temperatures higher than 300 degrees C and can be interpreted as a multistep process. At the initial stage of exposure to H(2)-Ar, a small weight gain was observed. This might indicate direct sorption of hydrogen into the lattice, forming hydride-oxide phases. On the other hand, the oxide lattice could reduce to form water, and then, the evolved water is reincorporated into the lattice to give a small weight gain. This is followed by dramatic weight loss. Water was found to be the main gaseous product formed during reduction. Complex perovskites, depending upon composition, rapidly lose up to 6-12 mol % of the lattice oxygen, which is accompanied by phase or structural transformations in the solid. Further mechanism and kinetics of reduction strongly depend on temperature. The rate of reduction at intermediate temperatures (500-700 degrees C) becomes slow, probably due to a local stabilization of La(OH)(3) in extremely humidified hydrogen-containing atmosphere. The complete reduction of perovskites can occur at 800 degrees C. On long-term annealing, the perovskite containing three transition elements and Sr on the B and A sublattices, respectively, showed better thermochemical stability in hydrogen-containing atmosphere. The results suggest that the presence of structural defects and their mobility in the oxygen sublattice are important factors determining the thermochernical stability of perovskites.

Close

Details

Original languageEnglish
Pages (from-to)1514-1523
Number of pages10
JournalChemistry of Materials
Volume21
Issue number8
DOIs
Publication statusPublished - 28 Apr 2009

    Research areas

  • LA, CONDUCTIVITY, STRUCTURE REFINEMENT, SYSTEM, PHASE, OXIDES, STRONTIUM, OXIDATION, SOLID-SOLUTIONS, LASRCOO3H0.7

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC)

    Liu, X., Xie, D., Irvine, J. T. S., Ni, J. & Ni, C., 11 Jan 2020, In : Electrochimica Acta. In press, 135692.

    Research output: Contribution to journalArticle

  2. A B-site doped perovskite ferrate for efficient anode of a solid oxide fuel cell with in situ metal exsolution

    Ni, C., Zeng, Q., He, D., Peng, L., Xie, D., Irvine, J. T. S., Duan, S. & Ni, J., 21 Dec 2019, In : Journal of Materials Chemistry A. 7, 47, p. 26944-26953 10 p.

    Research output: Contribution to journalArticle

  3. Lattice strain-enhanced exsolution of nanoparticles in thin films

    Han, H., Park, J., Nam, S. Y., Choi, G. M., Parkin, S. S. P., Jang, H. M. & Irvine, J. T. S., 1 Dec 2019, In : Nature Communications. 10, 8 p., 1471.

    Research output: Contribution to journalArticle

  4. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties

    Chambers, M. S., McCombie, K. S., Auckett, J. E., McLaughlin, A. C., Irvine, J. T. S., Chater, P. A., Evans, J. S. O. & Evans, I. R., 28 Nov 2019, In : Journal of Materials Chemistry. 7, 44, p. 25503-25510 8 p.

    Research output: Contribution to journalArticle

  5. Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+δ oxides

    Huang, X., Ni, C. & Irvine, J. T. S., 25 Nov 2019, In : Journal of Alloys and Compounds. 810, 151865.

    Research output: Contribution to journalArticle

Related by journal

  1. Large crystalline domains and enhanced exciton diffusion length enable efficient organic solar cells

    Zhang, Y., Sajjad, M. T., Blaszczyk, O., Parnell, A. J., Ruseckas, A., Serrano, L. A., Cooke, G. & Samuel, I. D. W., 10 Sep 2019, In : Chemistry of Materials. 31, 17, p. 6548-6557

    Research output: Contribution to journalArticle

  2. n-type doping of organic semiconductors: immobilization via covalent anchoring

    Reiser, P., Benneckendorf, F. S., Barf, M-M., Müller, L., Bäuerle, R., Hillebrandt, S., Beck, S., Lovrincic, R., Mankel, E., Freudenberg, J., Jänsch, D., Kowalsky, W., Pucci, A., Jaegermann, W., Bunz, U. H. F. & Müllen, K., 11 Jun 2019, In : Chemistry of Materials. 31, 11, p. 4213-4221 9 p.

    Research output: Contribution to journalArticle

  3. A reinvestigation of Na2Fe2(C2O4)2H2O: an iron-based positive electrode for secondary batteries

    Yao, W., Sougrati, M-T., Hoang, K., Hui, J., Lightfoot, P. & Armstrong, A. R., 14 Nov 2017, In : Chemistry of Materials. 29, 21, p. 9095-9101

    Research output: Contribution to journalArticle

  4. Assembly-diassembly-organization-reassembly synthesis of zeolites based on cfi-type layers

    Firth, D. S., Morris, S. A., Wheatley, P. S., Russell, S. E., Slawin, A. M. Z., Dawson, D. M., Mayoral, A., Opanasenko, M., Položij, M., Čejka, J., Nachtigall, P. & Morris, R. E., 11 Jul 2017, In : Chemistry of Materials. 29, 13, p. 5605-5611

    Research output: Contribution to journalArticle

  5. Controlling of structural ordering and rigidity of β-SiAlON:Eu through chemical cosubstitution to approach narrow-band-emission for light-emitting diodes application

    Zhang, X., Fang, M-H., Tsai, Y-T., Lazarowska, A., Mahlik, S., Lesniewski, T., Grinberg, M., Pang, W. K., Pan, F., Liang, C., Zhou, W., Wang, J., Lee, J-F., Cheng, B-M., Hung, T-L., Chen, Y-Y. & Liu, R-S., 22 Aug 2017, In : Chemistry of Materials. 29, 16, p. 6781-6792

    Research output: Contribution to journalArticle

Related by journal

  1. Chemistry of Materials (Journal)

    Finlay Morrison (Reviewer)
    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

ID: 47287688

Top