Skip to content

Research at St Andrews

Thermochemical and Structural Stability of A- and B-Site-Substituted Perovskites in Hydrogen-Containing Atmosphere

Research output: Contribution to journalArticlepeer-review

DOI

Author(s)

Elena Konysheva, John Thomas Sirr Irvine

School/Research organisations

Abstract

The thermochemical and structural stability of complex perovskites A(1-x)A'(x)B(1-y-z)B'(y)B $(z)O(3 +/-delta) (A, A' = La, Sr and B, B' B $ = Ni, Mn, Fe, Co) was explored in H(2)-Ar atmosphere (5% H(2)-95% Ar) in a wide temperature range by thermogravimetric analysis, differential thermal analysis, XRD, and HRTEM. All perovskites showed good thermochemical stability in a temperature range of 25-300 degrees C. Reduction of the perovskites occurs at temperatures higher than 300 degrees C and can be interpreted as a multistep process. At the initial stage of exposure to H(2)-Ar, a small weight gain was observed. This might indicate direct sorption of hydrogen into the lattice, forming hydride-oxide phases. On the other hand, the oxide lattice could reduce to form water, and then, the evolved water is reincorporated into the lattice to give a small weight gain. This is followed by dramatic weight loss. Water was found to be the main gaseous product formed during reduction. Complex perovskites, depending upon composition, rapidly lose up to 6-12 mol % of the lattice oxygen, which is accompanied by phase or structural transformations in the solid. Further mechanism and kinetics of reduction strongly depend on temperature. The rate of reduction at intermediate temperatures (500-700 degrees C) becomes slow, probably due to a local stabilization of La(OH)(3) in extremely humidified hydrogen-containing atmosphere. The complete reduction of perovskites can occur at 800 degrees C. On long-term annealing, the perovskite containing three transition elements and Sr on the B and A sublattices, respectively, showed better thermochemical stability in hydrogen-containing atmosphere. The results suggest that the presence of structural defects and their mobility in the oxygen sublattice are important factors determining the thermochernical stability of perovskites.

Close

Details

Original languageEnglish
Pages (from-to)1514-1523
Number of pages10
JournalChemistry of Materials
Volume21
Issue number8
DOIs
Publication statusPublished - 28 Apr 2009

    Research areas

  • LA, CONDUCTIVITY, STRUCTURE REFINEMENT, SYSTEM, PHASE, OXIDES, STRONTIUM, OXIDATION, SOLID-SOLUTIONS, LASRCOO3H0.7

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells

    Tian, Y., Wang, W., Liu, Y., Naden, A., Xu, M., Wu, S., Chi, B., Pu, J. & Irvine, J. T. S., 19 Mar 2021, In: ACS Catalysis. 11, 6, p. 3704-3714 11 p.

    Research output: Contribution to journalArticlepeer-review

  2. Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation

    Umar, A., Neagu, D. & Irvine, J. T. S., 1 Mar 2021, In: Biofuel Research Journal. 8, 1, p. 1342-1350 9 p.

    Research output: Contribution to journalArticlepeer-review

  3. Non-stoichiometry, structure and properties of proton-conducting perovskite oxides

    Li, S. & Irvine, J. T. S., Mar 2021, In: Solid State Ionics. 361, 115571.

    Research output: Contribution to journalReview articlepeer-review

  4. Upscaling of co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells: a progress report on a decade of academic-industrial collaboration

    Price, R., Cassidy, M., Grolig, J. G., Longo, G. G., Weissen, U. G., Mai, A. G. & Irvine, J. T. S., 12 Feb 2021, In: Advanced Energy Materials. Early View, 21 p., 2003951.

    Research output: Contribution to journalReview articlepeer-review

  5. Microwave irradiation synthesis to obtain La0.7-xPrxCa0.3MnO3 perovskites: electrical and electrochemical performance

    Ferrel-Alvarez, A. C., Domínguez-Crespo, M. A., Cong, H., Torres-Huerta, A. M., Palma-Ramírez, D. & Irvine, J. T. S., 15 Jan 2021, In: Journal of Alloys and Compounds. 851, 156882.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Chemistry of Materials (Journal)

    Finlay Morrison (Reviewer)

    2009 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. Cation control of cooperative CO2 adsorption in Li-containing mixed cation forms of the flexible zeolite merlinoite

    Georgieva, V. M., Bruce, E. L., Chitac, R. G., Lozinska, M. M., Hall, A., Murray, C., Smith, R., Turrina, A. & Wright, P. A., 10 Feb 2021, In: Chemistry of Materials. Articles ASAP

    Research output: Contribution to journalArticlepeer-review

  2. Local structure and order-disorder transitions in "empty" ferroelectric tetragonal tungsten bronzes

    McNulty, J. A., Pesquera, D., Gardner, J., Rotaru, A., Playford, H. Y., Tucker, M. G., Carpenter, M. A. & Morrison, F. D., 13 Oct 2020, In: Chemistry of Materials. 32, 19, p. 8492-8501

    Research output: Contribution to journalArticlepeer-review

  3. Large crystalline domains and enhanced exciton diffusion length enable efficient organic solar cells

    Zhang, Y., Sajjad, M. T., Blaszczyk, O., Parnell, A. J., Ruseckas, A., Serrano, L. A., Cooke, G. & Samuel, I. D. W., 10 Sep 2019, In: Chemistry of Materials. 31, 17, p. 6548-6557

    Research output: Contribution to journalArticlepeer-review

  4. n-type doping of organic semiconductors: immobilization via covalent anchoring

    Reiser, P., Benneckendorf, F. S., Barf, M-M., Müller, L., Bäuerle, R., Hillebrandt, S., Beck, S., Lovrincic, R., Mankel, E., Freudenberg, J., Jänsch, D., Kowalsky, W., Pucci, A., Jaegermann, W., Bunz, U. H. F. & Müllen, K., 11 Jun 2019, In: Chemistry of Materials. 31, 11, p. 4213-4221 9 p.

    Research output: Contribution to journalArticlepeer-review

  5. A reinvestigation of Na2Fe2(C2O4)2H2O: an iron-based positive electrode for secondary batteries

    Yao, W., Sougrati, M-T., Hoang, K., Hui, J., Lightfoot, P. & Armstrong, A. R., 14 Nov 2017, In: Chemistry of Materials. 29, 21, p. 9095-9101

    Research output: Contribution to journalArticlepeer-review

ID: 47287688

Top