Skip to content

Research at St Andrews

Thermoluminescence of SrAl2O4:Eu2+, Dy3+: kinetic analysis of a composite-peak

Research output: Contribution to journalArticle

Abstract

The kinetic analysis of thermoluminescence of beta-irradiated SrAl2O4:Eu2+,Dy3+ is reported. The glow-curve is dominated by an apparently-single peak. It has been demonstrated using a number of tests including partial dynamic-heating, isothermal heating, phosphorescence and, the effect of fading, that the peak and the glow-curve consists of a set of closely-spaced peaks. In view of the peak being complex, its first few components were abstracted and analysed and for comparison, the peak was also analysed assuming it is genuinely single. In the latter, the order of kinetics is calculated to be intermediate between first and second-order and not first-order as predicted by qualitative tests such as the Tm − Tstop or Tmdose  procedures. A model based on density of energy states has been used to account for and reconcile the qualitative and quantitative results. The activation energy is found as ∼1 eV, consistent with the value expected of Dy2+, the presumed electron trapping state of the Dy3+ electron trap. The thermoluminescence is subject to thermal quenching with an activation energy of 0.520 ± 0.002 eV. The luminescence is ascribed to 5d→4f7 Eu2+ transitions whereas the thermal quenching is presumed to occur from an alternative level of the degenerate 5d energy level of the Eu2+ cation.
Close

Details

Original languageEnglish
Pages (from-to)1-13
Number of pages13
JournalRadiation Measurements
Volume97
Early online date22 Dec 2016
DOIs
Publication statusPublished - Feb 2017

    Research areas

  • Thermoluminescence, Kinetic-analysis, SrAl2O4:Eu2+,Dy3+, Thermal quenching, Collocation

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. How volcanoes recycle the Earth’s crust to uncover rare metals that are vital to green technology

    Finch, A., Borst, A. & Hutchison, W., 30 Oct 2019, The Conversation.

    Research output: Contribution to specialist publicationArticle

  2. Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth

    Hutchison, W., Babiel, R., Finch, A. A., Marks, M., Markl, G., Boyce, A. J., Stüeken, E. E., Friis, H., Borst, A. M. & Horsburgh, N. J., 16 Sep 2019, In : Nature Communications. 10, 12 p., 4208.

    Research output: Contribution to journalArticle

  3. Structural state of Rare Earth Elements in Eudialyte-Group Minerals

    Borst, A. M., Finch, A. A., Friis, H., Horsburgh, N., Gamaletsos, P., Goettlicher, J., Steininger, R. & Geraki, K., 2 Aug 2019, In : Mineralogical Magazine.

    Research output: Contribution to journalArticle

  4. Hydrothermal alteration of eudialyte-hosted critical metal deposits: fluid source and implications for deposit grade

    van de Ven, M. A. J., Borst, A. M., Davies, G. R., Hunt, E. J. & Finch, A. A., 10 Jul 2019, In : Minerals. 9, 7, 23 p., 422.

    Research output: Contribution to journalArticle

  5. Optical determination of the width of the band-tail states, and the excited state and ground state energies of the principal dosimetric trap in feldspar

    Riedesel, S., King, G. E., Prasad, A. K., Kumar, R., Finch, A. A. & Jain, M., Jun 2019, In : Radiation Measurements. 125, p. 40-51

    Research output: Contribution to journalArticle

Related by journal

  1. Optical determination of the width of the band-tail states, and the excited state and ground state energies of the principal dosimetric trap in feldspar

    Riedesel, S., King, G. E., Prasad, A. K., Kumar, R., Finch, A. A. & Jain, M., Jun 2019, In : Radiation Measurements. 125, p. 40-51

    Research output: Contribution to journalArticle

  2. Non-Poisson variations in photomultipliers and implications for luminescence dating

    Carter, J., Cresswell, A., Kinnaird, T. C., Carmichael, L., Murphy, S. & Sanderson, D., 15 Dec 2018, In : Radiation Measurements. 120, p. 267-273

    Research output: Contribution to journalArticle

  3. Strategies for equivalent dose determination without heating, suitable for portable luminescence readers

    Roberts, H. M., Duller, G. A. T., Gunn, M., Cousins, C. R., Cross, R. E. & Langstaff, D., 27 Apr 2018, In : Radiation Measurements. In press

    Research output: Contribution to journalArticle

  4. The problem of dating quartz 1: Spectroscopic ionoluminescence of dose dependence

    King, G., Finch, A. A., Robinson, R. A. J. & Hole, D. E., Jan 2011, In : Radiation Measurements. 46, 1, p. 1-9 9 p.

    Research output: Contribution to journalArticle

ID: 248517679

Top