Skip to content

Research at St Andrews

Three-dimensional movements of harbour seals in a tidally energetic channel: application of a novel sonar tracking system

Research output: Contribution to journalArticle

DOI

Open Access Status

  • Embargoed (until 18/03/20)

Abstract

1. Understanding how marine predators utilize habitats requires that we consider their behaviour in three dimensions. Recent research has shown that marine mammals often make use of tidally energetic locations for foraging, yet data are generally limited to observations of animals at the water surface. Such areas are also of interest to the renewable energy industry for the deployment of tidal-stream energy turbines; this has led to concerns about potential impacts on marine mammals.

2. Methods for measuring animal movements underwater are limited; however, active sonar can image marine mammals and could potentially measure 3D movements in tidally energetic locations. Here, a dual 720 kHz sonar system was developed to investigate the 3D movements of harbour seals (Phoca vitulina) in a tidally-energetic channel.

3. Estimated mean depth (distance from the surface) of seals was 12.0 m (95% CIs = 11.6–12.4), and the majority of time was spent at the surface and at approximately 10–12 m distance from the surface. When expressed as distances from the sea bed, mean distance was 18.5 m (95% CIs = 18.0–18.9), and the majority of time was spent at 14 m from the sea bed.

4. Seal movements were generally in the same direction as the tidal flow with mean horizontal speeds of between 0.51 and 3.13 m s−1 (95% CIs = 1.24–1.54 m s−1). Mean vertical velocities (where negative and positive values represent a descent and ascent respectively) for each seal track ranged between −1.76 and +0.88 m s−1 (95% CIs: −0.23 to +0.03 m s−1).

5. These results provide a basis for understanding how seals utilize a dynamic tidal environment and suggest that harbour seal behaviour can be markedly different to less tidally energetic habitats. The results also have important implications for the prediction of risk associated with interactions between diving seals and tidal turbines in these dynamic habitats.
Close

Details

Original languageEnglish
JournalAquatic Conservation: Marine and Freshwater Ecosystems
VolumeEarly View
Early online date18 Mar 2019
DOIs
Publication statusE-pub ahead of print - 18 Mar 2019

    Research areas

  • Behaviour, Environmental impact assessment, Mammals, New techniques, Renewable energy

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Scottish Government Demonstration Strategy: Trialing methods for tracking the fine scale underwater movements of marine mammals in areas of marine renewable energy development

    Sparling, C. E., Gillespie, D. M., Hastie, G. D., Gordon, J. C. D., MacAulay, J. D. J., Malinka, C. E., Wu, G-M. & McConnell, B. J., Feb 2016, 14 ed. Scottish Marine and Freshwater Science. 108 p. (Scottish Marine and Freshwater Science Reports)

    Research output: Book/ReportCommissioned report

  2. Tracking technologies for quantifying marine mammal interactions with tidal turbines: pitfalls and possibilities

    Hastie, G. D., Gillespie, D. M., Gordon, J. C. D., MacAulay, J. D. J., McConnell, B. J. & Sparling, C. E., 2014, Marine Renewable Energy Technology and Environmental Interactions. Shields, M. & Payne, A. (eds.). Dordrecht: Springer Science and Business Media, (Humanity and the Sea).

    Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)

  3. Cetacean rapid assessment: an approach to fill knowledge gaps and target conservation across large data deficient areas

    Braulik, G. T., Kasuga, M., Wittich, A., Kiszka, J. J., MacAulay, J., Gillespie, D., Gordon, J., Said, S. S. & Hammond, P. S., Feb 2018, In : Aquatic Conservation: Marine and Freshwater Ecosystems. 28, 1, p. 216-230

    Research output: Contribution to journalArticle

Related by journal

  1. Cetacean rapid assessment: an approach to fill knowledge gaps and target conservation across large data deficient areas

    Braulik, G. T., Kasuga, M., Wittich, A., Kiszka, J. J., MacAulay, J., Gillespie, D., Gordon, J., Said, S. S. & Hammond, P. S., Feb 2018, In : Aquatic Conservation: Marine and Freshwater Ecosystems. 28, 1, p. 216-230

    Research output: Contribution to journalArticle

  2. Evaluating the potential of photo-identification as a monitoring tool for flapper skate (Dipturus intermedius)

    Benjamins, S., Dodd, J., Thorburn, J., Milway, V. A., Campbell, R. & Bailey, D. M., 27 Jul 2018, In : Aquatic Conservation: Marine and Freshwater Ecosystems. Early View, 14 p.

    Research output: Contribution to journalArticle

  3. Spatial versus temporal structure: implications of inter-haul variation and relatedness in the North East Atlantic Spurdog Squalus acanthias

    Thorburn, J., Jones, R., Neat, F., Pinto, C., Bendall, V., Hetherington, S., Bailey, D. M., Noble, L. & Jones, C., 2 Aug 2018, In : Aquatic Conservation: Marine and Freshwater Ecosystems. Early View

    Research output: Contribution to journalArticle

Related by journal

  1. Aquatic Conservation: Marine and Freshwater Ecosystems (Journal)

    Monica Arso Civil (Reviewer)
    Jul 2018 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

ID: 256485525