Skip to content

Research at St Andrews

ThX-a next-generation probe for the early detection of amyloid aggregates

Research output: Contribution to journalArticlepeer-review


Open Access permissions



Lisa Maria Needham, Judith Weber, Juan A. Varela, James W.B. Fyfe, Dung T. Do, Catherine K. Xu, Luke Tutton, Rachel Cliffe, Benjamin Keenlyside, David Klenerman, Christopher M. Dobson, Christopher A. Hunter, Karin H. Müller, Kevin O'Holleran, Sarah E. Bohndiek, Thomas N. Snaddon, Steven F. Lee

School/Research organisations


Neurodegenerative diseases such as Alzheimer's and Parkinson's are associated with protein misfolding and aggregation. Recent studies suggest that the small, rare and heterogeneous oligomeric species, formed early on in the aggregation process, may be a source of cytotoxicity. Thioflavin T (ThT) is currently the gold-standard fluorescent probe for the study of amyloid proteins and aggregation processes. However, the poor photophysical and binding properties of ThT impairs the study of oligomers. To overcome this challenge, we have designed Thioflavin X, (ThX), a next-generation fluorescent probe which displays superior properties; including a 5-fold increase in brightness and 7-fold increase in binding affinity to amyloidogenic proteins. As an extrinsic dye, this can be used to study unique structural amyloid features both in bulk and on a single-aggregate level. Furthermore, ThX can be used as a super-resolution imaging probe in single-molecule localisation microscopy. Finally, the improved optical properties (extinction coefficient, quantum yield and brightness) of ThX can be used to monitor structural differences in oligomeric species, not observed via traditional ThT imaging.



Original languageEnglish
Pages (from-to)4578-4583
Number of pages6
JournalChemical Science
Issue number18
Early online date21 Feb 2020
Publication statusPublished - 14 May 2020

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Mechanistic development and recent applications of the Chan–Lam amination

    West, M., Fyfe, J., Vantourout, J. C. & Watson, A. J. B., 22 Nov 2019, In: Chemical Reviews. Articles ASAP

    Research output: Contribution to journalReview articlepeer-review

  2. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms

    De, S., Wirthensohn, D. C., Flagmeier, P., Hughes, C., Aprile, F. A., Ruggeri, F. S., Whiten, D. R., Emin, D., Xia, Z., Varela, J. A., Sormanni, P., Kundel, F., Knowles, T. P. J., Dobson, C. M., Bryant, C., Vendruscolo, M. & Klenerman, D., 4 Apr 2019, In: Nature Communications. 10, 11 p., 1541.

    Research output: Contribution to journalArticlepeer-review

  3. Optical structural analysis of individual α-synuclein oligomers

    Varela, J. A., Rodrigues, M., De, S., Flagmeier, P., Gandhi, S., Dobson, C. M., Klenerman, D. & Lee, S. F., 23 Apr 2018, In: Angewandte Chemie International Edition. 57, 18, p. 4886-4890 5 p.

    Research output: Contribution to journalArticlepeer-review

  4. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions

    Qamar, S., Wang, G., Randle, S. J., Ruggeri, F. S., Varela, J. A., Lin, J. Q., Phillips, E. C., Miyashita, A., Williams, D., Ströhl, F., Meadows, W., Ferry, R., Dardov, V. J., Tartaglia, G. G., Farrer, L. A., Kaminski Schierle, G. S., Kaminski, C. F., Holt, C. E., Fraser, P. E., Schmitt-Ulms, G. & 4 others, Klenerman, D., Knowles, T., Vendruscolo, M. & St George-Hyslop, P., 19 Apr 2018, In: Cell. 173, 3, p. 720-734 e15.

    Research output: Contribution to journalArticlepeer-review

  5. Comparative Analysis of Photoluminescence and Upconversion Emission from Individual Carbon Nanotubes for Bioimaging Applications

    Danne, N., Godin, A. G., Gao, Z., Varela, J. A., Groc, L., Lounis, B. & Cognet, L., 21 Feb 2018, In: ACS Photonics. 5, 2, p. 359-364 11 p.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Mechanomechanically assisted hydrolysis in the ADOR process

    Rainer, D. N., Rice, C. M., Warrender, S. J., Ashbrook, S. E. & Morris, R. E., 15 Jun 2020, In: Chemical Science. Advance Article, 10 p.

    Research output: Contribution to journalArticlepeer-review

  2. Method for accurate experimental determination of singlet and triplet exciton diffusion between thermally activated delayed fluorescence molecules

    Jakoby, M., Heidrich, S., Graf von Reventlow, L., Degitz, C., Madayanad Suresh, S., Zysman-Colman, E., Wenzel, W., Richards, B. & Howard, I., 16 Nov 2020, In: Chemical Science. Advance article

    Research output: Contribution to journalArticlepeer-review

  3. Programmable dynamic covalent nanoparticle building blocks with complementary reactivity

    Marro, N., della Sala, F. & Kay, E. R., 14 Jan 2020, In: Chemical Science. 11, 2, p. 372-383 12 p.

    Research output: Contribution to journalArticlepeer-review

  4. Tandem sequential catalytic enantioselective synthesis of highly-functionalised tetrahydroindolizine derivatives

    Zhang, S., Greenhalgh, M. D., Slawin, A. M. Z. & Smith, A. D., 12 Mar 2020, In: Chemical Science. Advance Article, 8 p.

    Research output: Contribution to journalArticlepeer-review

ID: 268723851