Skip to content

Research at St Andrews

Time-resolved in-situ X-ray diffraction study of CaO and CaO:Ca3Al2O6 composite catalysts for biodiesel production

Research output: Contribution to journalArticlepeer-review

Author(s)

A. Damiano Bonaccorso, Despoina Papargyriou, Aida Fuente Cuesta, Oxana V. Magdysyuk, Stefan Michalik, Thomas Connolley, Julia L. Payne, John T. S. Irvine

School/Research organisations

Abstract

Alternative and sustainable waste sources are receiving increasing attention as they can be used to produce biofuels with a low carbon footprint. Waste fish oil is one such example and can be considered an abundant and sustainable waste source to produce biodiesel. Ultimately this could lead to fishing communities having their own "off-grid" source of fuel for boats and vehicles. At the industrial level biodiesel is currently produced by homogeneous catalysis because of the high catalyst activity and selectivity. In contrast, heterogeneous catalysis offers several advantages such as improved reusability, reduced waste and lower processing costs. Here we investigate the phase evolution of two heterogeneous catalysts, CaO and a Ca3Al2O6:CaO ('C3A:CaO') composite, under in-situ conditions for biodiesel production from fish oil. A new reactor was designed to monitor the evolution of the crystalline catalyst during the reaction using synchrotron powder X-ray diffraction (PXRD). The amount of calcium diglyceroxide (CaDG) began to increase rapidly after approximately 30 minutes, for both catalysts. This rapid increase in CaDG could be linked to ex-situ NMR studies which showed that the conversion of fish oil to biodiesel rapidly increased after 30 minutes. The key to the difference in activity of the two catalysts appears to be that the Ca3Al2O6:CaO composite maintains a high rate of calcium diglyceroxide formation for longer than CaO, although the initial formation rates and reaction kinetics are similar. Overall this specialised in-situ set-up has been shown to be suitable to monitor the phase evolution of heterogeneous crystalline catalysts during the triglycerides transesterification reaction, offering the opportunity to correlate the crystalline phases to activity, deactivation and stability.
Close

Details

Original languageEnglish
Article number034014
Number of pages12
JournalJournal of Physics: Energy
Volume3
Issue number3
DOIs
Publication statusPublished - 28 Jun 2021

    Research areas

  • In-situ, Operando, Biodiesel, Heterogeneous catalysis, Waste to energy

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Lithiation of V2O3(SO4)2 - a flexible insertion host

    Linnell, S. F., Payne, J. L., Pickup, D. M., Chadwick, A. V., Armstrong, A. R. & Irvine, J. T. S., 7 Oct 2020, In: Journal of Materials Chemistry A. 8, 37, p. 19502-19512 11 p.

    Research output: Contribution to journalArticlepeer-review

  2. Bandgap bowing in a zero-dimensional hybrid halide perovskite derivative: spin-orbit coupling: versus lattice strain

    Chatterjee, S., Payne, J., Irvine, J. T. S. & Pal, A. J., 28 Feb 2020, In: Journal of Materials Chemistry A. 8, 8, p. 4416-4427 12 p.

    Research output: Contribution to journalArticlepeer-review

  3. Simultaneous CO2 removal from biomass conversion product gas and carbon nanotube formation via catalytic chemical vapour deposition

    Fuente-Cuesta, A., Savaniu, C., Carins, G. M., Miller, D. N., Lenzi, M. & Irvine, J. T. S., 1 Oct 2019, In: Sustainable Energy and Fuels. 3, 10, p. 2604-2614 11 p.

    Research output: Contribution to journalArticlepeer-review

  4. ´Waste-to-energy' fuel cell systems

    Fuente Cuesta, A., Savaniu, C., Pointon, K. D. & Irvine, J. T. S., 8 Sep 2019, Solid Oxide Fuel Cells 16, SOFC XVI. Eguchi, K. & Singhal, S. C. (eds.). Electrochemical Society, Inc., p. 1581-1590 10 p. (ECS Transactions; vol. 91, no. 1).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

Related by journal

  1. Journal of Physics: Energy (Journal)

    John Thomas Sirr Irvine (Member of editorial board)

    2018

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Roadmap on inorganic perovskites for energy applications

    Irvine, J., Rupp, J., Liu, G., Xu, X., Haile, S. M., Qian, X., Snyder, A., Freer, R., EKREN, DURSUN., Skinner, S., Celikbilek, O., Chen, S., Tao, S., Shin, T. H., O'Hayre, R., Huang, J., Duan, C., Papac, M., Li, S., Russel, A. & 8 others, Celorrio, V., Hayden, B., Nolan, H., Huang, X., Wang, G., Metcalfe, I., Neagu, D. & Martin, S. G., 7 May 2021, (Accepted/In press) In: Journal of Physics: Energy. In press

    Research output: Contribution to journalReview articlepeer-review

  2. Layered lithium niobium (III) oxide - LiNbO2 as a visible-light-driven photocatalyst for H2 evolution

    Xu, X., Liu, G., Ni, S. & Irvine, J. T. S., 20 Nov 2018, In: Journal of Physics: Energy. 1, 1, 7 p., 015001.

    Research output: Contribution to journalArticlepeer-review

  3. Welcome to JPhys Energy

    Irvine, J., 20 Nov 2018, In: Journal of Physics: Energy. 1, 1, 1 p., 010401.

    Research output: Contribution to journalEditorialpeer-review

ID: 273928108

Top