Skip to content

Research at St Andrews

Toward a PV-based algorithm for the dynamical core of hydrostatic global models

Research output: Contribution to journalArticle

Author(s)

Ali R. Mohebalhojeh, Mohammad Joghataei, David G. Dritschel

School/Research organisations

Abstract

The diabatic contour-advective semi-Lagrangian (DCASL) algorithms previously constructed for the shallow-water and multilayer Boussinesq primitive equations are extended to multilayer non-Boussinesq equations on the sphere using a hybrid terrain-following-isentropic (sigma-) vertical coordinate. It is shown that the DCASL algorithms face challenges beyond more conventional algorithms in that various types of damping, filtering, and regularization are required for computational stability, and the nonlinearity of the hydrostatic equation in the sigma- coordinate causes convergence problems with setting up a semi-implicit time-stepping scheme to reduce computational cost. The prognostic variables are an approximation to the Rossby-Ertel potential vorticity Q, a scaled pressure thickness, the horizontal divergence, and the surface potential temperature. Results from the DCASL algorithm in two formulations of the sigma- coordinate, differing only in the rate at which the vertical coordinate tends to with increasing height, are assessed using the baroclinic instability test case introduced by Jablonowski and Williamson in 2006. The assessment is based on comparisons with available reference solutions as well as results from two other algorithms derived from the DCASL algorithm: one with a semi-Lagrangian solution for Q and another with an Eulerian grid-based solution procedure with relative vorticity replacing Q as the prognostic variable. It is shown that at intermediate resolutions, results comparable to the reference solutions can be obtained.

Close

Details

Original languageEnglish
Pages (from-to)2481-2502
Number of pages22
JournalMonthly Weather Review
Volume144
Issue number6
Early online date10 Jun 2016
DOIs
Publication statusPublished - Jun 2016

    Research areas

  • Mathematical and statistical techniques, Isentropic analysis, Numerical analysis, modeling, Models and modeling

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Comparison of the Moist Parcel-In-Cell (MPIC) model with large-eddy simulation for an idealized cloud

    Böing, S. J., Dritschel, D. G., Parker, D. J. & Blyth, A. M., 29 Apr 2019, In : Quarterly Journal of the Royal Meteorological Society. In press, 17 p.

    Research output: Contribution to journalArticle

  2. On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer

    Dritschel, D. G. & Jalali, M. R., 25 Apr 2019, In : Journal of Fluid Mechanics. 865, p. 100-136

    Research output: Contribution to journalArticle

  3. Scale-invariant singularity of the surface quasigeostrophic patch

    Scott, R. K. & Dritschel, D. G., 25 Mar 2019, In : Journal of Fluid Mechanics. 863, 12 p., R2.

    Research output: Contribution to journalArticle

Related by journal

  1. On the Spectral Convergence of the Supercompact Finite-Difference Schemes for the f-Plane Shallow-Water Equations

    Ghader, S., Mohebalhojeh, A. R. & Esfahanian, V., Jul 2009, In : Monthly Weather Review. 137, 7, p. 2393-2406 14 p.

    Research output: Contribution to journalArticle

  2. The Diabatic Contour-Advective Semi-Lagrangian Algorithms for the Spherical Shallow Water Equations

    Mohebalhojeh, A. R. & Dritschel, D. G., 29 Sep 2009, In : Monthly Weather Review. 137, 9, p. 2979-2994 16 p.

    Research output: Contribution to journalArticle

  3. Assessing the numerical accuracy of complex spherical shallow-water flows

    Mohebalhojeh, A. R. & Dritschel, D. G., Nov 2007, In : Monthly Weather Review. 135, 11, p. 3876-3894 19 p.

    Research output: Contribution to journalArticle

  4. The diabatic contour advective semi-Lagrangian algorithm

    Dritschel, D. G. & Ambaum, M. HP., Sep 2006, In : Monthly Weather Review. 134, 9, p. 2503-2514 12 p.

    Research output: Contribution to journalArticle

ID: 245326488