Skip to content

Research at St Andrews

Turbulent flow reduces oxygen consumption in the labriform swimming shiner perch, Cymatogaster aggregata

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

Julie M. van der Hoop, Margaret L. Byron, Karlina Ozolina, David L. Miller, Jacob L. Johansen, Paolo Domenici, John F. Steffensen

School/Research organisations

Abstract

Fish swimming energetics are often measured in laboratory environments which attempt to minimize turbulence, though turbulent flows are common in the natural environment. To test whether the swimming energetics and kinematics of shiner perch Cymatogaster aggregata (a labriform swimmer) were affected by turbulence, two flow conditions were constructed in a swim-tunnel respirometer. A low-turbulence flow was created using a common swim-tunnel respirometry setup with a flow straightener and fine-mesh grid to minimize velocity fluctuations. A high-turbulence flow condition was created by allowing large velocity fluctuations to persist without a flow straightener or fine grid. The two conditions were tested with Particle Image Velocimetry to confirm significantly different turbulence properties throughout a range of mean flow speeds. Oxygen consumption rates of the swimming fish increased with swimming speeds and pectoral fin beat frequencies in both flow conditions. Higher turbulence also caused a greater positional variability in swimming individuals (vs. low-turbulence flow) at medium and high speeds. Surprisingly, fish used less oxygen in high turbulence compared to low-turbulence flow at medium and high swimming speeds. Simultaneous measurements of swimming kinematics indicated that these reductions in oxygen consumption could not be explained by specific known flow-adaptive behaviours such as Kármán-gaiting or entraining. Therefore, fish in high-turbulence flow may take advantage of the high variability in turbulent energy through time. These results suggest that swimming behavior and energetics measured in the lab in straightened flow, typical of standard swimming respirometers, might differ from that of more turbulent, semi-natural flow conditions.
Close

Details

Original languageEnglish
Article number168773
Number of pages11
JournalJournal of Experimental Biology
Volume221
Issue number11
Early online date3 Apr 2018
DOIs
Publication statusPublished - 12 Jun 2018

    Research areas

  • Vortex, Eddy, Gait, Swimming kinematics, Metabolism, Space use

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Using density surface models to estimate spatio-temporal changes in population densities and trend

    Camp, R. J., Miller, D. L., Thomas, L., Buckland, S. T. & Kendall, S. J., 9 Apr 2020, In : Ecography. Early View, 11 p.

    Research output: Contribution to journalArticle

  2. Understanding the stochastic partial differential equation approach to smoothing

    Miller, D. L., Glennie, R. & Seaton, A. E., 21 Jan 2020, In : ArXiv e-prints.

    Research output: Contribution to journalArticle

  3. From here and now to there and then: practical recommendations for extrapolating cetacean density surface models to novel conditions

    Bouchet, P. J-F., Miller, D. L., Roberts, J., Mannocci, L., Harris, C. M. & Thomas, L., 4 Sep 2019, University of St Andrews. 59 p. (CREEM Technical Report; no. 2019-1)

    Research output: Book/ReportOther report

Related by journal

  1. Acceleration-triggered animal-borne videos show a dominance of fish in the diet of female northern elephant seals

    Yoshino, K., Takahashi, A., Adachi, T., Costa, D. P., Robinson, P. W., Peterson, S. H., Hückstädt, L. A., Holser, R. R. & Naito, Y., 28 Feb 2020, In : Journal of Experimental Biology. 223, 5, 9 p., jeb212936.

    Research output: Contribution to journalArticle

  2. Diving apart together: call propagation in diving long-finned pilot whales

    Kok, A. C. M., van Kolfshoten, L., Campbell, J. A., von Benda-Beckmann, A. M., Miller, P. J. O., Slabbekoorn, H. & Visser, F., 27 May 2020, In : The Journal of experimental biology. 223

    Research output: Contribution to journalArticle

  3. Dynamic biosonar adjustment strategies in deep-diving Risso's dolphins driven partly by prey evasion

    Jensen, F. H., Keller, O. A., Tyack, P. L. & Visser, F., Feb 2020, In : Journal of Experimental Biology. 223, 9 p., jeb216283.

    Research output: Contribution to journalArticle

  4. Energy compensation and received echo level dynamics in constant-frequency bats during active target approaches

    Stidsholt, L., Müller, R., Beedholm, K., Ma, H., Johnson, M. & Madsen, P. T., 28 Jan 2020, In : Journal of Experimental Biology. 223, 2, 9 p., jeb217109.

    Research output: Contribution to journalArticle

  5. Flash and grab: deep-diving southern elephant seals trigger anti-predator flashes in bioluminescent prey

    Goulet, P., Guinet, C., Campagna, C., Campagna, J., Tyack, P. L. & Johnson, M., 19 May 2020, In : Journal of Experimental Biology. 223, 10, 11 p., jeb.222810.

    Research output: Contribution to journalArticle

ID: 253147472

Top