Skip to content

Research at St Andrews

Two unit analysis of Sri Lankan pygmy blue whale song over a decade

Research output: Contribution to journalArticle

DOI

Open Access Status

  • Embargoed (until 13/05/19)

Abstract

Sri Lankan pygmy blue whale song consists of three repeated units: (1) low frequency pulsive unit, (2) frequency modulated (FM) upsweep, and (3) long tonal downsweep. The Unit 2 FM unit has up to three visible upsweeps with energy concentrated at approximately 40, 50, and 60 Hz, while the Unit 3 (∼100 Hz) tonal downsweep is the most distinct unit lasting 20–30 s. Spectral characteristics of the Units 2 and 3 song elements, along with ocean sound levels, were analyzed in the Indian Ocean from 2002 to 2013. The peak frequency of the tonal Unit 3 calls decreased from approximately 106.5 to 100.7 Hz over a decade corresponding to a 5.4% decrease. Over the same time period, the frequency content of the Unit 2 upsweeps did not change as dramatically with only a 3.1% change. Ambient sound levels in the vocalization bands did not exhibit equivalent patterns in amplitude trends. Analysis showed no increase in the ambient sound or compensated peak amplitude levels of the tonal downsweeps, eliminating the presence of a Lombard effect. Here it is proposed that each song unit may convey different information and thus may be responding to different selective pressures.
Close

Details

Original languageEnglish
Pages (from-to)3618-3626
Number of pages9
JournalJournal of the Acoustical Society of America
Volume144
Issue number6
DOIs
Publication statusPublished - 31 Dec 2018

    Research areas

  • Sri Lankan pygmy blue whale, Song, Ambient sound, Selection

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. A review of unmanned vehicles for the detection and monitoring of marine fauna

    Verfuss, U. K., Aniceto, A. S., Harris, D. V., Gillespie, D., Fielding, S., Jiménez, G., Johnston, P., Sinclair, R. R., Sivertsen, A., Solbø, S. A., Storvold, R., Biuw, M. & Wyatt, R., Mar 2019, In : Marine Pollution Bulletin. 140, p. 17-29 13 p.

    Research output: Contribution to journalReview article

  2. Fin whale density and distribution estimation using acoustic bearings derived from sparse arrays

    Harris, D. V., Miksis-Olds, J. L., Vernon, J. A. & Thomas, L., May 2018, In : Journal of the Acoustical Society of America. 143, 5, p. 2980-2993 14 p.

    Research output: Contribution to journalArticle

  3. Spatio-temporal variation in click production rates of beaked whales: implications for passive acoustic density estimation

    Warren, V. E., Marques, T. A., Harris, D., Thomas, L., Tyack, P. L., Aguilar de Soto, N., Hickmott, L. S. & Johnson, M. P., Mar 2017, In : Journal of the Acoustical Society of America. 141, 3, p. 1962-1974 13 p.

    Research output: Contribution to journalArticle

  4. Lloyd's mirror effect in fin whale calls and its use to infer the depth of vocalizing animals

    Pereira, A., Harris, D., Tyack, P. & Matias, L., 2017, Proceedings of Meetings on Acoustics. Acoustical Society of America, Vol. 27. 15 p. (Proceedings of Meetings on Acoustics).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

Related by journal

  1. Predicting acoustic dose associated with marine mammal behavioural responses to sound as detected with fixed acoustic recorders and satellite tags

    von Benda-Beckmann, A. M., Wensveen, P. J., Prior, M., Ainslie, M. A., Hansen, R. R., Isojunno, S., Lam, F. P. A., Kvadsheim, P. H. & Miller, P. J. O., 20 Mar 2019, In : Journal of the Acoustical Society of America. 145, 3, p. 1401-1416 16 p.

    Research output: Contribution to journalArticle

  2. Fin whale density and distribution estimation using acoustic bearings derived from sparse arrays

    Harris, D. V., Miksis-Olds, J. L., Vernon, J. A. & Thomas, L., May 2018, In : Journal of the Acoustical Society of America. 143, 5, p. 2980-2993 14 p.

    Research output: Contribution to journalArticle

  3. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates

    von Benda-Beckmann, A., Thomas, L. J., Tyack, P. L. & Ainslie, M., Feb 2018, In : Journal of the Acoustical Society of America. 143, 2, p. 954-967

    Research output: Contribution to journalArticle

ID: 257367806