Skip to content

Research at St Andrews

Ultra-high foraging rates of harbor porpoises make them vulnerable to anthropogenic disturbance

Research output: Contribution to journalArticle

Author(s)

Danuta Maria Wisniewska, Mark Johnson, Jonas Teilmann, Laia Rojano-Doñate, Jeanne Shearer, Signe Sveegaard, Lee A. Miller, Ursula Siebert, Peter Teglberg Madsen

School/Research organisations

Abstract

Summary. The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator’s role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2–4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3–10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these “aquatic shrews,” even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels.
Close

Details

Original languageEnglish
Pages (from-to)1441-1446
JournalCurrent Biology
Volume26
Issue number11
Early online date26 May 2016
DOIs
Publication statusPublished - 6 Jun 2016

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. A miniature biomimetic sonar and movement tag to study the biotic environment and predator-prey interactions in aquatic animals

    Goulet, P., Guinet, C., Swift, R., Madsen, P. T. & Johnson, M., Jun 2019, In : Deep Sea Research Part I: Oceanographic Research Papers. 148, p. 1-11

    Research output: Contribution to journalArticle

  2. Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals

    Mikkelsen, L., Johnson, M., Wisniewska, D. M., van Neer, A., Siebert, U., Madsen, P. T. & Teilmann, J., 6 Feb 2019, In : Ecology and Evolution. Early View, 14 p.

    Research output: Contribution to journalArticle

  3. Advances in research on the impacts of anti-submarine sonar on beaked whales

    Bernaldo De Quirós, Y., Fernandez, A., Baird, R. W., Brownell, R. L., Aguilar De Soto, N., Allen, D., Arbelo, M., Arregui, M., Costidis, A., Fahlman, A., Frantzis, A., Gulland, F. M. D., Iñíguez, M., Johnson, M., Komnenou, A., Koopman, H., Pabst, D. A., Roe, W. D., Sierra, E., Tejedor, M. & 1 others, Schorr, G., 30 Jan 2019, In : Proceedings of the Royal Society B: Biological Sciences. 286, 1895, 20182533.

    Research output: Contribution to journalReview article

  4. Dolphin echolocation behaviour during active long-range target approaches

    Ladegaard, M., Mulsow, J., Houser, D. S., Jensen, F. H., Johnson, M., Madsen, P. T. & Finneran, J. J., 25 Jan 2019, In : Journal of Experimental Biology. 222, 12 p., jeb189217.

    Research output: Contribution to journalArticle

  5. A 2.6-gram sound and movement tag for studying the acoustic scene and kinematics of echolocating bats

    Stidsholt, L., Johnson, M., Beedholm, K., Jakobsen, L., Kugler, K., Brinkløv, S., Salles, A., Moss, C. F. & Madsen, P. T., Jan 2019, In : Methods in Ecology and Evolution. 10, 1, p. 48-58 11 p.

    Research output: Contribution to journalArticle

Related by journal

  1. Current Biology (Journal)

    Kate Arnold (Reviewer)
    2007 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

  2. Current Biology (Journal)

    Richard William Byrne (Member of editorial board)
    20052014

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Cooperation in children

    Slocombe, K. E. & Seed, A. M., 3 Jun 2019, In : Current Biology. 29, 11, p. R470-R473 4 p.

    Research output: Contribution to journalArticle

  2. Formant modification through vocal production learning in gray seals

    Stansbury, A. & Janik, V. M., 20 Jun 2019, In : Current Biology. 29, 10 p.

    Research output: Contribution to journalArticle

  3. Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees

    Surbeck, M., Boesch, C., Crockford, C., Emery Thompson, M., Furuichi, T., Fruth, B., Hohmann, G., Ishizuka, S., Machanda, Z., Muller, M. M., Pusey, A., Sakamaki, T., Tokuyama, N., Walker, K., Wragham, R., Wroblewski, E., Zuberbuhler, K., Vigilant, L. & Langergraber, K., 20 May 2019, In : Current Biology. 29, 10, p. R354-R355

    Research output: Contribution to journalArticle

  4. The greenbeard effect

    Gardner, A., Jun 2019, In : Current Biology. 29, 11, p. R430-R431

    Research output: Contribution to journalArticle

  5. Bonobos prefer individuals that hinder others over those that help

    Krupenye, C. & Hare, B., 22 Jan 2018, In : Current Biology. 28, 2, p. 280-286 e5.

    Research output: Contribution to journalArticle

ID: 243241876

Top