Skip to content

Research at St Andrews

Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Author(s)

A. Misra, V. Meadows, M. Claire, D. Crisp

School/Research organisations

Abstract

We present a new method to probe atmospheric pressure on Earth-like planets using (O-O) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.
Close

Details

Original languageEnglish
Pages (from-to)67-86
Number of pages20
JournalAstrobiology
Volume14
Issue number2
Early online date19 Feb 2014
DOIs
StatePublished - 19 Feb 2014

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Long-term planetary habitability and the carbonate-silicate cycle

    Rushby, A. J., Johnson, M., Mills, B. J. W., Watson, A. J. & Claire, M. W. 1 May 2018 In : Astrobiology. 18, 5, p. 469-480 12 p.

    Research output: Contribution to journalArticle

  2. Two-billion-year-old evaporites capture Earth's great oxidation

    Blättler, C., Claire, M., Prave, A. R., Zerkle, A. L. & Warke, M. R. 22 Mar 2018 In : Science. eaar2687

    Research output: Contribution to journalArticle

  3. Evaluation of the Tindouf Basin region in Southern Morocco as an analog site for soil geochemistry on Noachian Mars

    Oberlin, E. A., Claire, M. W. & Kounaves, S. 9 Feb 2018 In : Astrobiology. 18, 8

    Research output: Contribution to journalArticle

  4. High-frequency fluctuations in redox conditions during the latest Permian mass extinction

    Mettam, C., Zerkle, A. L., Claire, M. W., Izon, G., Junium, C. J. & Twitchett, R. J. 1 Nov 2017 In : Palaeogeography, Palaeoclimatology, Palaeoecology. 485, p. 210-223

    Research output: Contribution to journalArticle

Related by journal

  1. Evaluation of the Tindouf Basin region in Southern Morocco as an analog site for soil geochemistry on Noachian Mars

    Oberlin, E. A., Claire, M. W. & Kounaves, S. 9 Feb 2018 In : Astrobiology. 18, 8

    Research output: Contribution to journalArticle

  2. Exoplanet biosignatures: a review of remotely detectable signs of life

    Schwieterman, E. W., Kiang, N. Y., Parenteau, M. N., Harman, C. E., DasSarma, S., Fisher, T. M., Arney, G. N., Hartnett, H. E., Reinhard, C. T., Olson, S. L., Meadows, V. S., Cockell, C. S., Walker, S. I., Grenfell, J. L., Hegde, S., Rugheimer, S., Hu, R. & Lyons, T. W. 4 May 2018 In : Astrobiology. First Online, 46 p.

    Research output: Contribution to journalReview article

  3. Long-term planetary habitability and the carbonate-silicate cycle

    Rushby, A. J., Johnson, M., Mills, B. J. W., Watson, A. J. & Claire, M. W. 1 May 2018 In : Astrobiology. 18, 5, p. 469-480 12 p.

    Research output: Contribution to journalArticle

  4. The UK Centre for Astrobiology: a virtual astrobiology centre. Accomplishments and lessons learned, 2011-2016

    Cockell, C. S., Biller, B., Bryce, C., Cousins, C., Direito, S., Forgan, D., Fox-Powell, M., Harrison, J., Landenmark, H., Nixon, S., Payler, S. J., Rice, K., Samuels, T., Schwendner, P., Stevens, A., Nicholson, N. & Wadsworth, J. 29 Jan 2018 In : Astrobiology. 18, 2, 20 p.

    Research output: Contribution to journalArticle

  5. The PanCam instrument for the ExoMars rover

    Coates, A. , Jaumann, R. , Griffiths, A. , Leff, C. , Schmitz, N. , Josset, J-L. , Paar, G. , Gunn, M. , Hauber, E. , Cousins, C. R. , Cross, R. , Grindrod, P. , Bridges, J. , Balme, M. , Gupta, S. , Crawford, I. , Irwin, P. , Stabbins, R. , Tirsch, D. , Vago, J. & 4 others Theodorou, T., Caballo-Perucha, M., Osinski, G. & The PanCam team 1 Jul 2017 In : Astrobiology. 17, 6/7

    Research output: Contribution to journalArticle

ID: 118979352