Skip to content

Research at St Andrews

Using dose-response functions to improve calculations of the impact of anthropogenic noise

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

1. Estimating the number of animals impacted by a stressor typically involves combining a dose-response function with information about the distribution of animals and of the stressor.
2. Regulators often prefer a single threshold to a full dose-response function, but much of the variability observed in the threshold at which different individuals respond to a stressor is an inherent characteristic of populations that needs to be taken into account to predict effects of stressors. When selecting an exposure threshold, regulators need information on the proportion of the population that will be protected.
3. Regulatory processes that calculate the number of animals impacted must draw from the dose-response function, the actual distribution of the animals, and a model mapping how the stressor intensity declines with distance from the source. Ignoring any of these factors can lead to significant errors in estimates of the area and numbers of animals affected.
4. This paper focuses on behavioural responses of marine mammals to anthropogenic sound and demonstrates that a common approach of selecting the threshold at which half of the animals respond (RLp50) grossly underestimates the number of animals affected. We present an example, using a published dose-response function, where the number affected is under-estimated by a factor of 280. Results would be similar for any stressor whose strength decreases following an inverse-square function as it dilutes into the environment.
5. This paper presents a method to use a dose-response function to derive a more accurate estimate of animals affected and to set a threshold (the Effective Response Level) that corrects the problem with the RLp50 estimate.
6. Estimates of effects of stressors should include estimates of uncertainty, which can be used to adapt thresholds to different policy contexts and conservation problems.
Close

Details

Original languageEnglish
Pages (from-to)242-253
JournalAquatic Conservation: Marine and Freshwater Ecosystems
Volume29
Issue numberS1
Early online date6 Sep 2019
DOIs
Publication statusPublished - 6 Sep 2019

    Research areas

  • Acoustic threshold, Behavioural response, Behavioural take, Dose: response, Dose-response, Stressor exposure

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Understanding the population consequences of disturbance

    Pirotta, E., Booth, C. G., Costa, D. P., Fleishman, E., Kraus, S. D., Lusseau, D., Moretti, D., New, L. F., Schick, R. S., Schwarz, L. K., Simmons, S. E., Thomas, L., Tyack, P. L., Weise, M. J., Wells, R. S. & Harwood, J., 12 Sep 2018, In : Ecology and Evolution. Early View, 13 p.

    Research output: Contribution to journalReview article

  2. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates

    von Benda-Beckmann, A., Thomas, L. J., Tyack, P. L. & Ainslie, M., Feb 2018, In : Journal of the Acoustical Society of America. 143, 2, p. 954-967

    Research output: Contribution to journalArticle

  3. Marine mammals and sonar: dose-response studies, the risk-disturbance hypothesis and the role of exposure context

    Harris, C. M., Thomas, L., Falcone, E., Hildebrand, J., Houser, D., Kvadsheim, P., Lam, F-P. A., Miller, P., Moretti, D. J., Read, A., Slabbekoorn, H., Southall, B. L., Tyack, P. L., Wartzok, D. & Janik, V. M., Jan 2018, In : Journal of Applied Ecology. 55, 1, p. 396-404

    Research output: Contribution to journalReview article

  4. Spatio-temporal variation in click production rates of beaked whales: implications for passive acoustic density estimation

    Warren, V. E., Marques, T. A., Harris, D., Thomas, L., Tyack, P. L., Aguilar de Soto, N., Hickmott, L. S. & Johnson, M. P., Mar 2017, In : Journal of the Acoustical Society of America. 141, 3, p. 1962-1974 13 p.

    Research output: Contribution to journalArticle

  5. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals

    Tyack, P. L., Bailey, H., Crocker, D., Estes, J. E., Francis, C. D., Harwood, J., Schwacke, L., Thomas, L. J. & Wartzok, D., 2017, Washington DC: National Academies Press. 146 p.

    Research output: Book/ReportCommissioned report

Related by journal

  1. Aquatic Conservation: Marine and Freshwater Ecosystems (Journal)

    Monica Arso Civil (Reviewer)
    Jul 2018 → …

    Activity: Publication peer-review and editorial work typesPeer review of manuscripts

Related by journal

  1. Age–length relationships in UK harbour seals during a period of population decline

    Hall, A. J., Mackey, B., Kershaw, J. L. & Thompson, P., 6 Sep 2019, In : Aquatic Conservation: Marine and Freshwater Ecosystems. 29, S1, p. 61-70 10 p.

    Research output: Contribution to journalArticle

  2. Assessing cetacean body condition: is total lipid content in blubber biopsies a useful monitoring tool?

    Kershaw, J. L., Brownlow, A., Ramp, C. A., Miller, P. J. O. & Hall, A. J., 6 Sep 2019, In : Aquatic Conservation: Marine and Freshwater Ecosystems. 29, S1, p. 271-282 12 p.

    Research output: Contribution to journalArticle

  3. Automated detection and tracking of marine mammals: a novel sonar tool for monitoring effects of marine industry

    Hastie, G. D., Wu, G-M., Moss, S., Jepp, P., MacAulay, J. D. J., Lee, A., Sparling, C. E., Evers, C. H. M. & Gillespie, D. M., 6 Sep 2019, In : Aquatic Conservation: Marine and Freshwater Ecosystems. 29, S1, p. 119-130

    Research output: Contribution to journalArticle

  4. Changing distribution of the east coast of Scotland bottlenose dolphin population and the challenges of area-based management

    Arso Civil, M., Quick, N. J., Cheney, B., Pirotta, E., Thompson, P. M. & Hammond, P. S., 6 Sep 2019, In : Aquatic Conservation: Marine and Freshwater Ecosystems. 29, S1, p. 178-196 19 p.

    Research output: Contribution to journalArticle

ID: 258702458

Top