Skip to content

Research at St Andrews

Using the Mal'cev correspondence for collection in polycyclic groups

Research output: Contribution to journalArticlepeer-review

Abstract

We describe several approaches for realizing the Mal'cev correspondence between Q-powered nilpotent groups and nilpotent Lie algebras over Q. We apply it to fast collection in polycyclic groups. Our methods are fully implemented and publicly available. We report on the implementation and give runtimes for some example groups. (c) 2007 Elsevier Inc. All rights reserved.

Close

    Research areas

  • polycyclically presented groups, Mal'cev correspondence, collection, collection from the, REPRESENTATIONS

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Polynomial-time proofs that groups are hyperbolic

    Holt, D., Linton, S., Neunhoeffer, M., Parker, R., Pfeiffer, M. & Roney-Dougal, C. M., May 2021, In: Journal of Symbolic Computation. 104, p. 419-475

    Research output: Contribution to journalArticlepeer-review

  2. GAP – Groups, Algorithms, and Programming, Version 4.11.1

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 2 Mar 2021

    Research output: Non-textual formSoftware

  3. GAP – Groups, Algorithms, and Programming, Version 4.11.0

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 29 Feb 2020

    Research output: Non-textual formSoftware

  4. GAP – Groups, Algorithms, and Programming, Version 4.10.2

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 19 Jun 2019

    Research output: Non-textual formSoftware

  5. GAP – Groups, Algorithms, and Programming, Version 4.10.1

    The GAP Group, Behrends, R., Breuer, T., Horn, M., Hulpke, A., Jefferson, C. A., Konovalov, A., Linton, S. A., Lübeck, F., Mitchell, J. D., Pfeiffer, M. J., Siccha, S. & Torpey, M. C., 23 Feb 2019

    Research output: Non-textual formSoftware

Related by journal

  1. A transversal property for permutation groups motivated by partial transformations

    Araújo, J., Araújo, J. P., Bentz, W., Cameron, P. J. & Spiga, P., 5 Jan 2021, In: Journal of Algebra. 19 p.

    Research output: Contribution to journalArticlepeer-review

  2. Groups generated by derangements

    Bailey, R. A., Cameron, P. J., Giudici, M. & Royle, G. F., 15 Apr 2021, In: Journal of Algebra. 572, p. 245-262

    Research output: Contribution to journalArticlepeer-review

  3. Primitive permutation groups and strongly factorizable transformation semigroups

    Araújo, J., Bentz, W. & Cameron, P. J., 1 Jan 2021, In: Journal of Algebra. 565, p. 513-530

    Research output: Contribution to journalArticlepeer-review

  4. Involution centralisers in finite unitary groups of odd characteristic

    Glasby, S., Praeger, C. & Roney-Dougal, C. M., 1 Mar 2020, In: Journal of Algebra. 545, p. 245-299

    Research output: Contribution to journalArticlepeer-review

  5. The Hall–Paige conjecture, and synchronization for affine and diagonal groups

    Bray, J., Cai, Q., Cameron, P. J., Spiga, P. & Zhang, H., Mar 2020, In: Journal of Algebra. 545, p. 27-42

    Research output: Contribution to journalArticlepeer-review

ID: 378533

Top