Skip to content

Research at St Andrews

Utility of 222Rn as a passive tracer of subglacial distributed system drainage

Research output: Contribution to journalArticle

Author(s)

Benjamin S. Linhoff, Matthew A. Charette, Peter W. Nienow, Jemma L. Wadham, Andrew J. Tedstone, Tom Cowton

School/Research organisations

Abstract

Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011 and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10-15 dpm L-1), decreasing by a factor of 2-5 (3-5 dpm L-1) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1-5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.
Close

Details

Original languageEnglish
Pages (from-to)180-188
Number of pages9
JournalEarth and Planetary Science Letters
Volume462
Early online date23 Jan 2017
DOIs
Publication statusPublished - 15 Mar 2017

    Research areas

  • Radon, Greenland, Glacier, Proglacial river, Meltwater

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Sensitivity of tidewater glaciers to submarine melting governed by plume locations

    Cowton, T., Todd, J. A. & Benn, D. I., 9 Sep 2019, (Accepted/In press) In : Geophysical Research Letters. In press

    Research output: Contribution to journalArticle

  2. Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier

    Bevan, S., Luckman, A., Benn, D. I., Cowton, T. & Todd, J., 5 Sep 2019, In : The Cryosphere. 13, p. 2303-2315 13 p.

    Research output: Contribution to journalArticle

  3. The influence of hydrology on the dynamics of land-terminating sectors of the Greenland Ice Sheet

    Davison, B., Sole, A., Livingstone, S., Cowton, T. & Nienow, P., 21 Feb 2019, In : Frontiers in Earth Sciences. 7, 24 p., 10.

    Research output: Contribution to journalReview article

  4. Linear response of east Greenland’s tidewater glaciers to ocean/atmosphere warming

    Cowton, T., Sole, A., Nienow, P., Slater, D. & Christoffersen, P., 31 Jul 2018, In : Proceedings of the National Academy of Sciences of the United States of America. 115, 31, p. 7907-7912

    Research output: Contribution to journalArticle

  5. Glacier calving in Greenland

    Benn, D. I., Cowton, T., Todd, J. & Luckman, A., Dec 2017, In : Current Climate Change Reports. 3, 4, p. 282-290

    Research output: Contribution to journalReview article

Related by journal

  1. Earth and Planetary Science Letters (Journal)

    Chris Hawkesworth (Member of editorial board)
    19851993

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”

    Ahms, A-S., Maloof, A., Macdonald, F., Hoffman, P., Bjerrum, C., Bold, U., Rose, C. V., Strauss, J. & Higgins, J., 15 Jan 2019, In : Earth and Planetary Science Letters. 506, p. 292-307 16 p.

    Research output: Contribution to journalArticle

  2. Anaerobic nitrogen cycling on a Neoarchean ocean margin

    Mettam, C. W., Zerkle, A. L., Claire, M., Prave, A. R., Poulton, S. W. & Junium, C. K., 17 Sep 2019, In : Earth and Planetary Science Letters. 527, 115800.

    Research output: Contribution to journalArticle

  3. Consequences of glacial cycles for magmatism and carbon transport at mid-ocean ridges

    Cerpa, N. G., Rees Jones, D. W. & Katz, R. F., 26 Sep 2019, In : Earth and Planetary Science Letters. 528, 115845.

    Research output: Contribution to journalArticle

  4. Secular change in TTG compositions: implications for the evolution of Archaean geodynamics

    Johnson, T. E., Kirkland, C. L., Gardiner, N. J., Brown, M., Smithies, R. H. & Santosh, M., 1 Jan 2019, In : Earth and Planetary Science Letters. 505, p. 65-75 11 p.

    Research output: Contribution to journalArticle

  5. Stratospheric eruptions from tropical and extra-tropical volcanoes constrained using high-resolution sulfur isotopes in ice cores

    Burke, A., Moore, K. A., Sigl, M., Nita, D. C., McConnell, J. R. & Adkins, J. F., 1 Sep 2019, In : Earth and Planetary Science Letters. 521, p. 113-119 7 p.

    Research output: Contribution to journalArticle

ID: 248656090

Top