Research output: Contribution to journal › Article › peer-review
Valeryia Kasneryk, Mariya Shamzhy, Jingtian Zhou, Qiudi Yue, Michal Mazur, Alvaro Mayoral, Zhenlin Luo, Russell E. Morris, Jiří Čejka, Maksym Opanasenko
Owing to the significant difference in the numbers of simulated and experimentally feasible zeolite structures, several alternative strategies have been developed for zeolite synthesis. Despite their rationality and originality, most of these techniques are based on trial-and-error, which makes it difficult to predict the structure of new materials. Assembly-Disassembly-Organization-Reassembly (ADOR) method overcoming this limitation was successfully applied to a limited number of structures with relatively stable crystalline layers (UTL, UOV, *CTH). Here, we report a straightforward, vapour-phase-transport strategy for the transformation of IWW zeolite with low-density silica layers connected by labile Ge-rich units into material with new topology. In situ XRD and XANES studies on the mechanism of IWW rearrangement reveal an unusual structural distortion-reconstruction of the framework throughout the process. Therefore, our findings provide a step forward towards engineering nanoporous materials and increasing the number of zeolites available for future applications.
Original language | English |
---|---|
Article number | 5129 |
Number of pages | 8 |
Journal | Nature Communications |
Volume | 10 |
DOIs | |
Publication status | Published - 12 Nov 2019 |
Discover related content
Find related publications, people, projects and more using interactive charts.
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Review article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Ife Okafor-Yarwood (Reviewer)
Activity: Publication peer-review and editorial work types › Peer review of manuscripts
Andy Gardner (Reviewer)
Activity: Publication peer-review and editorial work types › Peer review of manuscripts
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
ID: 263519854