Skip to content

Research at St Andrews

Viral diagnostics in plants using next generation sequencing: Computational analysis in practice

Research output: Contribution to journalReview articlepeer-review

Author(s)

Susan Jones, Amanda Baizan-Edge, Stuart MacFarlane, Lesley Torrance

School/Research organisations

Abstract

Viruses cause significant yield and quality losses in a wide variety of cultivated crops. Hence, the detection and identification of viruses is a crucial facet of successful crop production and of great significance in terms of world food security. Whilst the adoption of molecular techniques such as RT-PCR has increased the speed and accuracy of viral diagnostics, such techniques only allow the detection of known viruses, i.e. each test is specific to one or a small number of related viruses. Therefore, unknown viruses can be missed and testing can be slow and expensive if molecular tests are unavailable. Methods for simultaneous detection of multiple viruses have been developed, and (NGS) is now a principal focus of this area, as it enables unbiased and hypothesis-free testing of plant samples. The development of NGS protocols capable of detecting multiple known and emergent viruses present in infected material is proving to be a major advance for crops, nuclear stocks or imported plants and germplasm, in which disease symptoms are absent, unspecific or only triggered by multiple viruses. Researchers want to answer the question “how many different viruses are present in this crop plant?” without knowing what they are looking for: RNA-sequencing (RNA-seq) of plant material allows this question to be addressed. As well as needing efficient nucleic acid extraction and enrichment protocols, virus detection using RNA-seq requires fast and robust bioinformatics methods to enable host sequence removal and virus classification. In this review recent studies that use RNA-seq for virus detection in a variety of crop plants are discussed with specific emphasis on the computational methods implemented. The main features of a number of specific bioinformatics workflows developed for virus detection from NGS data are also outlined and possible reasons why these have not yet been widely adopted are discussed. The review concludes by discussing the future directions of this field, including the use of bioinformatics tools for virus detection deployed in analytical environments using cloud computing.
Close

Details

Original languageEnglish
Article number1770
Number of pages10
JournalFrontiers in Plant Science
Volume8
DOIs
Publication statusPublished - 24 Oct 2017

    Research areas

  • Viral diagnostic, Next generation sequencing (NGS), Crop protection, Food security, Bioinformatics & computational biology

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Potato virus Y emergence and evolution from the Andes of South America to become a major destructive pathogen of potato and other solanaceous crops worldwide

    Torrance, L. & Talianksy, M. E., 12 Dec 2020, In: Viruses. 12, 12, 14 p., 1430.

    Research output: Contribution to journalReview articlepeer-review

  2. TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberization via protein interaction with the tuberigen activation complex

    Zhang, X., Campbell, R., Ducreux, L. J. M., Morris, J., Hedley, P. E., Mellado-Ortega, E., Roberts, A. G., Stephens, J., Bryan, G. J., Torrance, L., Chapman, S. N., Prat, S. & Taylor, M. A., 14 Jul 2020, In: The Plant Journal. Early View, 16 p.

    Research output: Contribution to journalArticlepeer-review

  3. Natural resistance to Potato virus Y in Solanum tuberosum Group Phureja

    Torrance, L., Cowan, G., McLean, K., MacFarlane, S., Al-Abedy, A., Armstrong, M., Lim, T-Y., Hein, I. & Bryan, G., Mar 2020, In: Theoretical and Applied Genetics. 133, p. 967–980 14 p.

    Research output: Contribution to journalArticlepeer-review

  4. RNA sequence analysis of diseased groundnut (Arachis hypogaea) reveals the full genome of groundnut rosette assistor virus (GRAV)

    Jones, S., Cowan, G., MacFarlane, S., Mukoye, B., Mangeni, B. C., Were, H. & Torrance, L., Feb 2020, In: Virus Research. 277, 197837.

    Research output: Contribution to journalArticlepeer-review

  5. A functional investigation of the suppression of CpG and UpA dinucleotide frequencies in plant RNA virus genomes

    Ibrahim, A., Fros, J., Bertran, A., Sechan, F., Odon, V., Torrance, L., Kormelink, R. & Simmonds, P., 1 Dec 2019, In: Scientific Reports. 9, 1, 18359.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Frontiers in Plant Science (Journal)

    Jens Tilsner (Guest editor)

    20132014

    Activity: Publication peer-review and editorial work typesEditor of research journal

Related by journal

  1. Nicotiana benthamiana as a transient expression host to produce auxin analogs

    Davis, K., Gkotsi, D. S., Smith, D. R. M., Goss, R. J. M., Caputi, L. & O’Connor, S. E., 20 Nov 2020, In: Frontiers in Plant Science. 11, 9 p., 581675.

    Research output: Contribution to journalArticlepeer-review

  2. Creating contacts between replication and movement at plasmodesmata – a role for membrane contact sites in plant virus infections?

    Levy, A. & Tilsner, J., 3 Jul 2020, In: Frontiers in Plant Science. 11, 8 p., 862.

    Research output: Contribution to journalReview articlepeer-review

  3. Efficient detection of long dsRNA in vitro and in vivo using the dsRNA binding domain from FHV B2 protein

    Monsion, B., Incarbone, M., Hleibieh, K., Poignavent, V., Ghannam, A., Dunoyer, P., Daeffler, L., Tilsner, J. & Ritzenthaler, C., 1 Feb 2018, In: Frontiers in Plant Science. 9, 16 p., 70.

    Research output: Contribution to journalArticlepeer-review

  4. The Globodera pallida SPRYSEC effector GpSPRY-414-2 that suppresses plant defenses targets a regulatory component of the dynamic microtubule network

    Mei, Y., Wright, K. M., Haegeman, A., Bauters, L., Diaz-Granados, A., Goverse, A., Gheysen, G., Jones, J. T. & Mantelin, S., 12 Jul 2018, In: Frontiers in Plant Science. 9, 16 p., 1019.

    Research output: Contribution to journalArticlepeer-review

  5. Association mapping of diastatic power in UK winter and spring barley by exome sequencing of phenotypically contrasting variety sets

    Looseley, M. E., Bayer, M., Bull, H., Ramsay, L., Thomas, W., Booth, A., De La Fuente Canto, C., Morris, J., Hedley, P. E. & Russell, J., 12 Sep 2017, In: Frontiers in Plant Science. 8, 13 p., 1566.

    Research output: Contribution to journalArticlepeer-review

ID: 251666038

Top