Skip to content

Research at St Andrews

Volcanogenic Fluvial-lacustrine environments in Iceland and their utility for identifying past habitability on Mars

Research output: Contribution to journalArticle

DOI

Open Access permissions

Open

Abstract

The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing.
Close

Details

Original languageEnglish
Pages (from-to)568-586
Number of pages19
JournalLife
Volume5
Issue number1
DOIs
Publication statusPublished - 16 Feb 2015

    Research areas

  • Mars, Lacustrine, Fluvial , Volcanism, Habitability, Iceland, Astrobiology

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Natural analogue constraints on Europa's non-ice surface material

    Fox-Powell, M. G., Osinski, G. R., Applin, D., Stromberg, J. M., Gázquez, F., Cloutis, E., Allender, E. & Cousins, C. R., 16 Jun 2019, In : Geophysical Research Letters. 46, 11, p. 5759-5767 9 p.

    Research output: Contribution to journalArticle

  2. Biosignature detection by Mars rover equivalent instruments in samples from the CanMars Mars Sample Return Analogue Deployment

    Stromberg, J. M., Parkinson, A., Morison, M., Cloutis, E., Casson, N., Applin, D., Poitras, J., Marti, A. M., Maggiori, C., Cousins, C., Whyte, L., Kruzelecky, R., Das, D., Leveille, R., Berlo, K., Sharma, S. K., Acosta-Maeda, T., Daly, M. & Lalla, E., 15 Jun 2019, In : Planetary and Space Science. In press

    Research output: Contribution to journalArticle

  3. UV luminescence characterisation of organics in Mars-analogue substrates

    Laurent, B., Cousins, C. R., Gunn, M., Huntly, C., Cross, R. & Allender, E., 15 Mar 2019, In : Icarus. 321, p. 929-937

    Research output: Contribution to journalArticle

  4. Effects of UV-organic interaction and Martian conditions on the survivability of organics

    Laurent, B., Cousins, C. R., Pereira, M. F. C. & Martins, Z., 24 Jan 2019, In : Icarus. In press

    Research output: Contribution to journalArticle

  5. The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)

    Balme, M. R., Curtis-Rouse, M. C., Banham, S., Barnes, D., Barnes, R., Bauer, A., Bedford, C. C., Bridges, J. C., Butcher, F. E. G., Caballo-Perucha, P., Caldwell, A., Coates, A. J., Cousins, C., Davis, J. M., Dequaire, J., Edwards, P., Fawdon, P., Furuya, K., Gadd, M., Get, P. & 33 othersGriffiths, A., Grindrod, P. M., Gunn, M., Gupta, S., Hansen, R., Harris, J. K., Hicks, L. J., Holt, J., Huber, B., Huntly, C., Hutchinson, I., Jackson, L., Kay, S., Kyberd, S., Lerman, H. N., McHugh, M., McMahon, W. J., Muller, J-P., Ortner, T., Osinski, G., Paar, G., Preston, L. J., Schwenzer, S. P., Stabbins, R., Tao, Y., Traxler, C., Turner, S., Tyler, L., Venn, S., Walker, H., Wilcox, T., Wright, J. & Yeomans, B., 7 Dec 2018, In : Planetary and Space Science. In press

    Research output: Contribution to journalArticle

Related by journal

  1. Phosphate activation via reduced oxidation state phosphorus (P). Mild routes to condensed-P energy currency molecules

    Kee, T., Bryant, D., Herschy, B., Marriott, K., Cosgrove, N., Pasek, M., Atlas, Z. & Cousins, C. R., 19 Jul 2013, In : Life. 3, 3

    Research output: Contribution to journalArticle

ID: 206015878