Skip to content

Research at St Andrews

What fraction of the Pacific and Indian oceans' deep water is formed in the Southern Ocean?

Research output: Contribution to journalArticlepeer-review

Abstract

In this contribution we explore constraints on the fractions of deep water present in the Indian and Pacific oceans which originated in the northern Atlantic and in the Southern Ocean. Based on PO4* we show that if ventilated Antarctic shelf waters characterize the Southern contribution, then the proportions could be close to 50–50. If instead a Southern Ocean bottom water value is used, the Southern contribution is increased to 75 %. While this larger estimate may best characterize the volume of water entering the Indo-Pacific from the Southern Ocean, it contains a significant portion of entrained northern water. We also note that ventilation may be highly tracer dependent: for instance Southern Ocean waters may contribute only 35 % of the deep radiocarbon budget, even if their volumetric contribution is 75 %. In our estimation, the most promising approaches involve using CFC-11 to constrain the amount of deep water formed in the Southern Ocean. Finally, we highlight the broad utility of PO4* as a tracer of deep water masses, including descending plumes of Antarctic Bottom Water and large-scale patterns of deep ocean mixing, and as a tracer of the efficiency of the biological pump.
Close

Details

Original languageEnglish
Pages (from-to)3779-3794
Number of pages16
JournalBiogeosciences
Volume15
DOIs
Publication statusPublished - 21 Jun 2018

Discover related content
Find related publications, people, projects and more using interactive charts.

View graph of relations

Related by author

  1. Interactions between deep formation fluid and gas hydrate dynamics inferred from pore fluid geochemistry at active pockmarks of the Vestnesa Ridge, west Svalbard margin

    Hong, W-L., Pape, T., Schmidt, C., Yao, H., Wallmann, K., Plaza-Faverola, A., Rae, J. W. B., Lepland, A., Bünz, S. & Bohrmann, G., May 2021, In: Marine and Petroleum Geology. 127, 13 p., 104957.

    Research output: Contribution to journalArticlepeer-review

  2. Atmospheric CO2 over the past 66 million years from marine archives

    Rae, J. W. B., Zhang, Y. G., Liu, X., Foster, G. L., Stoll, H. M. & Whiteford, R. D. M., May 2021, In: Annual Review of Earth and Planetary Sciences. 49, 1

    Research output: Contribution to journalArticlepeer-review

  3. Uranium distribution and incorporation mechanism in deep-sea corals: implications for seawater [CO32–] proxies

    Chen, S., Littley, E. F. M., Rae, J. W. B., Charles, C. D. & Adkins, J. F., 23 Mar 2021, In: Frontiers in Earth Science. 9, 14 p., 641327.

    Research output: Contribution to journalArticlepeer-review

  4. Carbon cycle dynamics during episodes of rapid climate change

    Meissner, K. J., Brook, E., Finkelstein, S. A. & Rae, J., 23 Mar 2021, In: Environmental Research Letters. 16, 4, 8 p., 040201.

    Research output: Contribution to journalEditorialpeer-review

  5. Controls on boron isotopes in a cold-water coral and the cost of resilience to ocean acidification

    Gagnon, A., Gothmann, A., Branson, O., Rae, J. W. B. & Stewart, J., 15 Jan 2021, In: Earth and Planetary Science Letters. 554, 10 p., 116662.

    Research output: Contribution to journalArticlepeer-review

Related by journal

  1. Organic carbon rich sediments: benthic foraminifera as bio-indicators of depositional environments

    Lo Giudice Cappelli, E., Clarke, J., Smeaton, C., Davidson, K. & Austin, W. E. N., 6 Nov 2019, In: Biogeosciences. 16, p. 4183-4199 17 p.

    Research output: Contribution to journalArticlepeer-review

  2. Variation in brachiopod microstructure and isotope geochemistry under low-pH-ocean acidification conditions

    Ye, F., Jurikova, H., Angiolini, L., Brand, U., Crippa, G., Henkel, D., Laudien, J., Hiebenthal, C. & Šmajgl, D., 1 Feb 2019, In: Biogeosciences. 16, 2, p. 617-642 26 p.

    Research output: Contribution to journalArticlepeer-review

  3. Cyanobacterial endobionts within a major marine planktonic calcifier (Globigerina bulloides, Foraminifera) revealed by 16S rRNA metabarcoding

    Bird, C., Darling, K. F., Russell, A. D., Davis, C. V., Fehrenbacher, J., Free, A., Wyman, M. & Ngwenya, B. T., 28 Feb 2017, In: Biogeosciences. 14, 4, p. 901-920 20 p.

    Research output: Contribution to journalArticlepeer-review

  4. Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology

    Morard, R., Lejzerowicz, F., Darling, K. F., Lecroq-Bennet, B., Winther Pedersen, M., Orlando, L., Pawlowski, J., Mulitza, S., de Vargas, C. & Kucera, M., 6 Jun 2017, In: Biogeosciences. 14, 11, p. 2741-2754 14 p.

    Research output: Contribution to journalArticlepeer-review

ID: 253403551

Top